Advertisement

Collection of Plant Remains from Archaeological Contexts

  • Alessandra Celant
  • Donatella Magri
  • Francesca Romana Stasolla
Chapter

Abstract

Plant remains from archaeological contexts constitute a variety of materials providing indications on human activity and past environments. They may be found in different archaeological structures and may be preserved in different ways (waterlogged, dried, charred, and mineralized plant remains, and plant impressions) depending on the chemical composition of the tissues and the processes of post-depositional modification. The first step for any collection of plant remains is a preliminary survey of the archaeological site, to establish the best sampling strategy and to plan times and modes of collection. Different collection techniques may be applied depending on the type of plant remains. Macrofossils interspersed in sediment are extracted using flotation or sieving (wet or dry) procedures, or a combination of methods. Fine sediments containing microfossils may be collected from resins, encrustations, material from mummies, and various types of artifacts, or from exposed stratigraphical profiles, or may be drilled from lakes and ponds in the vicinity of the archaeological site. In any case, particular attention must be paid to avoid breakage, and contamination with modern material and with plant remains from adjacent sediment layers.

Keywords

Archaeobotany Archaeology Plant microfossils Plant macrofossils Sampling 

References

  1. 1.
    van Zeist W (1991) Economic aspects. In: van Zeist W, Wasylikowa K, Behre K-E (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 109–130Google Scholar
  2. 2.
    Figueiral I, Willcox G (1999) Archaeobotany: collecting and analytical techniques for sub-fossils. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. Geological Society, London, pp 290–294Google Scholar
  3. 3.
    Körber-Grohne U (1991) Identification methods. In: van Zeist W, Wasylikowa K, Behre K-E (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 3–24Google Scholar
  4. 4.
    Hastorf CA (1999) Recent research in paleoethnobotany. J Archaeol Res 7:55–103Google Scholar
  5. 5.
    Jacomet S, Kreuz A (1999) Archäobotanik: Aufgaben, Methoden und Ergebnisse vegetations-und agrargeschichtlicher Forschung. Ulmer, StuttgartGoogle Scholar
  6. 6.
    Pearsall DM (2000) Paleoethnobotany. A handbook of procedures. Academic, San DiegoGoogle Scholar
  7. 7.
    Jacomet S (2007) Use in environmental archaeology. Encyclopedia of quaternary science. Elsevier, Oxford, pp 2384–2412Google Scholar
  8. 8.
    Gale R, Cutler D (2000) Plants in archaeology. Identification manual of vegetative plant materials used in Europe and the southern Mediterranean to c. 1500. Westbury Publishing and Royal Botanic Gardens, Kew, pp 1–13Google Scholar
  9. 9.
    Behre K-E, Jacomet S (1991) The ecological interpretation of archaeobotanical data. In: van Zeist W, Wasylikowa K, Behre K-E (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 81–108Google Scholar
  10. 10.
    Hather JG (1993) An archaeobotanical guide to root and tuber identification. Oxbow Books, OxfordGoogle Scholar
  11. 11.
    Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world. Oxford University Press, OxfordCrossRefGoogle Scholar
  12. 12.
    Cappers RT, Neef R (2012) Handbook of plant palaeoecology. Barkhuis, GroningenGoogle Scholar
  13. 13.
    Duke JA (1992) CRC handbook of edible weeds. CRC Press, Boca RatonGoogle Scholar
  14. 14.
    Willcox G (2012) Searching for the origins of arable weeds in the Near East. Veg Hist Archaeobot 21:163–167CrossRefGoogle Scholar
  15. 15.
    Latalowa M, Badura M, Jarosińska J (2003) Archaeobotanical samples from non-specific urban contexts as a tool for reconstructing environmental conditions (examples from Elbląg and Kołobrzeg, northern Poland). Veg Hist Archaeobot 12:93–104CrossRefGoogle Scholar
  16. 16.
    Wilson DG (1979) Horse dung from Roman Lancaster: a botanical report. Archaeo-physika 8:331–350Google Scholar
  17. 17.
    van Zeist W, Waterbolk-Van Rooijen W (1992) Two interesting floral finds from third millennium BC Tell Hammam et-Turkman, northern Syria. Veg Hist Archaeobot 1:157–161CrossRefGoogle Scholar
  18. 18.
    Wadley L, Sievers C, Bamford M, Goldberg P, Berna F, Miller C (2011) Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science 334:1388–1391CrossRefPubMedGoogle Scholar
  19. 19.
    Wild JP (2003) Textiles in archaeology. Osprey Publishing, OxfordGoogle Scholar
  20. 20.
    Dickson JH, Bortenschlager S, Oeggl K, Porley R, McMullen A (1996) Mosses and the Tyrolean Iceman’s southern provenance. Proc Royal Soc London (Series B: Biol Sci) 263:567–571CrossRefGoogle Scholar
  21. 21.
    Faegri K, Kaland PE, Krzywinski K (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester, pp 1–328Google Scholar
  22. 22.
    Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol. 3 (Terrestrial, algal, and siliceous indicators). Kluwer Academic Publishers, Dordrecht, pp 5–32Google Scholar
  23. 23.
    Camacho CN, Carrión JS, Navarro J, Munuera M, Prieto AR (2000) An experimental approach to the palynology of cave deposits. J Quat Sci 15:603–619CrossRefGoogle Scholar
  24. 24.
    Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking Environmental change using lake sediments, vol 3 (Terrestrial, algal, and siliceous indicators). Kluwer Academic Publishers, Dordrecht, pp 99–119Google Scholar
  25. 25.
    Gauthier E, Bichet V, Massa C, Petit C, Vannière B, Richard H (2010) Pollen and non-pollen palynomorph evidence of medieval farming activities in southwestern Greenland. Veg Hist Archaeobot 19:427–438CrossRefGoogle Scholar
  26. 26.
    Miola A (2012) Tools for non-pollen palynomorphs (NPPs) analysis: a list of quaternary NPP types and reference literature in English language (1972–2011). Rev Palaeob Palynol 186:142–161CrossRefGoogle Scholar
  27. 27.
    Whitlock C, Larsen C (2001) Charcoal as a fire proxy. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3 (Terrestrial, algal, and siliceous indicators). Kluwer Academic Publishers, Dordrecht, pp 75–97Google Scholar
  28. 28.
    Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3 (Terrestrial, algal, and siliceous indicators). Kluwer Academic Publishers, Dordrecht, pp 155–202Google Scholar
  29. 29.
    Battarbee RW (1988) The use of diatom analysis in archaeology: a review. J Archaeol Sci 15:621–644CrossRefGoogle Scholar
  30. 30.
    Reitz E, Shackley M (2012) Environmental archaeology. Springer, New YorkCrossRefGoogle Scholar
  31. 31.
    Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, LanhamGoogle Scholar
  32. 32.
    Brown TA, Brown K (2011) Biomolecular archaeology: an introduction. Wiley, ChichesterCrossRefGoogle Scholar
  33. 33.
    Wales N, Andersen K, Cappellini E, Ávila-Arcos MC, Gilbert MTP (2014) Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLos One 9:e86827PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Oeggl K, Kofler W, Schimidl A, Dickson JH, Egarter-Vigl E, Gaber O (2007) The reconstruction of the last itinerary of Ötzi, the Neolithic Iceman, by pollen analyses from sequentially sampled gut extracts. Quat Sci Rev 26:853–861CrossRefGoogle Scholar
  35. 35.
    Ernst M, Jacomet S (2006) The value of the archaeobotanical analysis of desiccated plant remains from old buildings: methodological aspects and interpretation of crop weed assemblages. Veg Hist Archaeobot 15:45–56CrossRefGoogle Scholar
  36. 36.
    Van der Veen M (2007) Formation processes of desiccated and carbonized plant remains—the identification of routine practice. J Archaeol Sci 34:968–990CrossRefGoogle Scholar
  37. 37.
    Renfrew JM (1973) Palaeoethnobotany: the prehistoric food plants of the Near East and Europe. Columbia University Press, New YorkGoogle Scholar
  38. 38.
    Rowley-Conwy P (2011) Westward Ho! The spread of agriculture from Central Europe to the Atlantic. Curr Anthropol 52:S431–S451CrossRefGoogle Scholar
  39. 39.
    Wright PJ (2010) Methodological issues in Paleoethnobotany: a consideration of issues, methods, and cases. In: Van Derwarker AM, Peres TM (eds) Integrating zooarchaeology and paleoethnobotany: a consideration of issues, methods, and case. Springer, New York, pp 37–64CrossRefGoogle Scholar
  40. 40.
    Jones MK (1991) Sampling in palaeoethnobotany. In: van Zeist W, Wasylikowa K, Behre K-E (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 53–62Google Scholar
  41. 41.
    Lennstrom HA, Hastorf CA (1995) Interpretation in context: sampling and analysis in Paleoethnobotany. Am Antiquity 60:701–721CrossRefGoogle Scholar
  42. 42.
    Bandini Mazzanti M, Bosi G, Mercuri AM (2005) Semi, frutti e annessi fiorali: l’archeocarpologia. In: Caneva G (ed) La Biologia Vegetale per i Beni Culturali. Vol. II. (Conoscenza e valorizzazione). Nardini Editore, Firenze, pp 46–56Google Scholar
  43. 43.
    Hageman JB, Goldstein DJ (2009) An integrated assessment of archaeobotanical recovery methods in the Neotropical rainforest of northern Belize: flotation and dry screening. J Archaeol Sci 36:2841–2852CrossRefGoogle Scholar
  44. 44.
    Tolar T, Jacomet S, Velušček A, Čufar K (2010) Recovery techniques for waterlogged archaeological sediments: a comparison of different treatment methods for samples from Neolithic lake shore settlements. Veg Hist Archaeobot 19:53–67CrossRefGoogle Scholar
  45. 45.
    Aaby B, Digerfeldt G (1985) Sampling techniques for lakes and bogs. In: Berglund B (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 181–194Google Scholar
  46. 46.
    Glew JR, Smol JP, Last WM (2001) Sediment core collection and extrusion. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1 (Basin analysis, coring, and chronological Techniques). Kluwer Academic Publishers, Dordrecht, pp 73–105Google Scholar
  47. 47.
    Wright PJ (2005) Flotation samples and some paleoethnobotanical implications. J Archaeol Sci 32:19–26CrossRefGoogle Scholar
  48. 48.
    García-Granero JJ, Lancelotti C, Madella M (2015) A tale of multi-proxies: integrating macro-and microbotanical remains to understand subsistence strategies. Veg Hist Archaeobot 24:121–133CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alessandra Celant
    • 1
  • Donatella Magri
    • 1
  • Francesca Romana Stasolla
    • 2
  1. 1.Department of Environmental BiologySapienza UniversityRomeItaly
  2. 2.Department of HumanitiesSapienza UniversityPiazzale Aldo Moro 5Italy

Personalised recommendations