Skip to main content

Chromosome Techniques and FISH

Abstract

Fluorescence in situ hybridization (FISH) enables us to visualize the physical position of specific DNA sequences in chromosomes spread on a slide, making it possible to study cytogenetics at the molecular level. It involves hybridization of a specific DNA sequence with the complementary DNA spread on a slide and the immunological detection and visualization of those hybridization sites. Genome in situ hybridization (GISH) is a modified version of FISH to use total genomic DNA labeled as a probe. It is often used to differentiate the parental chromosomes in an interspecific hybrid and to reveal the genome components of a polyploid. FISH to plant chromosomes is thought to be more difficult than to animal species mainly because of the cell wall and viscous cytoplasm. Therefore, preparation of chromosome spreads is crucial for satisfactory FISH/GISH results with plant materials. Here we share our experience in preparing plant chromosome spreads for FISH analysis. We also provide a brief FISH procedure for beginners who want to perform FISH analysis of their materials. With the principles described here, a routine FISH/GISH protocol to obtain high-quality FISH images for publication can be established with continuous practice and modification.

Keywords

  • Chromosome spread
  • Enzymatic maceration
  • FISH
  • GISH
  • Molecular cytogenetics
  • Plant chromosomes
  • rDNA

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-19944-3_17
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-19944-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 17.1
Fig. 17.2
Fig. 17.3

References

  1. Gall JG, Pardue ML (1969) Formation and detection of RNA–DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 69:378–383

    CrossRef  Google Scholar 

  2. John H, Birnstiel ML, Jones KW (1969) RNA–DNA hybrids at the cytological level. Nature 223:578–582

    CrossRef  Google Scholar 

  3. Ferguson-Smith MA (1991) Putting the genetics back into cytogenetics. Am J Hum Genet 48:179–182

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Hutchinson J, Lonsdale LM (1982) The chromosomal distribution of cloned highly repetitive sequences from hexaploid wheat. Heredity 48:371–376

    CAS  CrossRef  Google Scholar 

  5. Wu HK, Chung MC, Wu T, Ning CN, Wu R (1991) Localization of specific repetitive DNA sequences in individual rice chromosomes. Chromosoma 100:330–338

    CAS  CrossRef  PubMed  Google Scholar 

  6. Harper ME, Saunders GF (1981) Localization of single copy DNA sequences on G-banded human chromosomes by in situ hybridization. Chromosoma 83:431–439

    CAS  CrossRef  PubMed  Google Scholar 

  7. Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A 78:6633–6637

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  8. Brigati DJ, Myerson D, Leary JJ, Spalholz B et al (1983) Detection of viral genomes in cultured cells and paraffin-embedded tissues using biotin-labelled hybridization probes. Virology 126:32–50

    CAS  CrossRef  PubMed  Google Scholar 

  9. Trask BJ (1991) Fluorescent in situ hybridization. Trends Genet 7:149–154

    CAS  CrossRef  PubMed  Google Scholar 

  10. Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76:78–81

    Google Scholar 

  11. Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717–725

    CAS  CrossRef  PubMed  Google Scholar 

  12. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83:2934–2938

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  13. Langer-Safer PR, Levine M, Ward DC (1982) Immunocytological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A 79:4381–4385

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  14. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  15. Tönnies H (2002) Modern molecular cytogenetic techniques in genetic diagnostics. Trends Mol Med 8:246–250

    CrossRef  PubMed  Google Scholar 

  16. Tönnies H (2010) Molecular cytogenetics in molecular diagnostics. In: Patrinos G, Ansorge W (eds) Molecular diagnostics, 2nd edn. Elsevier, Burlington, pp 133–153

    CrossRef  Google Scholar 

  17. Gerlach WL, Miller TE, Flavell RB (1980) The nucleolus organizers of diploid wheats revealed by in situ hybridization. Theor Appl Genet 58:97–100

    CAS  CrossRef  PubMed  Google Scholar 

  18. Gerlach WL, Peacock WI (1980) Chromosomal locations of highly repeated DNA sequences in wheat. Heredity 44:269–276

    CAS  CrossRef  Google Scholar 

  19. Miller TE, Hutchinson J, Reader SM (1983) The identification of the nucleolus organiser chromosomes of diploid wheat. Theor Appl Genet 65:145–147

    CAS  CrossRef  PubMed  Google Scholar 

  20. de Jong H (2003) Visualizing DNA domains and sequences by microscopy: a fifty-year history of molecular cytogenetics. Genome 46:943–946

    CrossRef  PubMed  Google Scholar 

  21. Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    CAS  CrossRef  PubMed  Google Scholar 

  22. Siroky J (2008) Chromosome landmarks as tools to study the genome of Arabidopsis thaliana. Cytogenet Genome Res 120:202–209

    CAS  CrossRef  PubMed  Google Scholar 

  23. Ohmido N, Fukui K, Kinoshita T (2010) Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proc Jpn Acad Ser B 86:103–116

    CAS  CrossRef  Google Scholar 

  24. Mukai Y (2005) Perspectives in molecular cytogenetics of wheat. Wheat Information Service 100:17–31

    Google Scholar 

  25. Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Nat Acad Sci U S A 101:13554–13559

    CAS  CrossRef  Google Scholar 

  26. Gupta PK, Kulwal PL, Rustgi S (2005) Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 109:315–327

    CAS  CrossRef  PubMed  Google Scholar 

  27. Stack SM, Royer SM, Shearer LA, Chang SB et al (2009) Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res 124:339–350

    CAS  CrossRef  PubMed  Google Scholar 

  28. Szinay D, Bai Y, Visser R, de Jong H (2010) FISH applications for genomics and plant breeding strategies in tomato and other Solanaceous crops. Cytogenet Genome Res 129:199–210

    CAS  CrossRef  PubMed  Google Scholar 

  29. Snowdon RJ (2007) Cytogenetics and genome analysis in Brassica crops. Chrom Res 15:85–95

    CAS  CrossRef  PubMed  Google Scholar 

  30. Kopecký D, Lukaszewski AJ, Doležel J (2008) Cytogenetics of Festulolium (Festuca x Lolium hybrids). Cytogenet Genome Res 120:370–383

    CrossRef  PubMed  Google Scholar 

  31. Kao FI, Cheng YY, Chow TY, Chen HH et al (2006) An integrated map of Oryza sativa L. chromosome 5. Theor Appl Genet 112:891–902

    CAS  CrossRef  PubMed  Google Scholar 

  32. Kubis S, Schmidt T, Heslop-Harrison JS (1998) Repetitive DNA elements as major components of plant genomes. Ann Bot 82 (Suppl. A):45–55

    CAS  CrossRef  Google Scholar 

  33. Fang SA, Eu TI, Chung MC (2011) Isolation and characterization of genome-specific markers in Oryza species with the BB genome. Plant Sci 181:300–308

    CAS  CrossRef  PubMed  Google Scholar 

  34. Chung MC, Lee YI, Cheng YY, Chou YJ, Lu CF (2008) Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor Appl Genet 116:745–753

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  35. Chang YC, Shii CT, Chung MC (2009) Variations in ribosomal RNA gene loci in spider lily (Lycoris spp.). J Am Soc Hortic Sci 134:567–573

    Google Scholar 

  36. Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC et al (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876

    CAS  CrossRef  PubMed  Google Scholar 

  37. Lo KL, Wang LC, Chen IJ, Liu YC, Chung MC, Lo WS (2014) Transcriptional consequence and impaired gametogenesis with high-grade aneuploidy in Arabidopsis thaliana. PLoS ONE 9(12):e114617. doi:10.1371/journal.pone.0114617

    PubMed Central  CrossRef  PubMed  Google Scholar 

  38. Cheng ZK, Buell CR, Wing RA, Jiang J (2002) Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chrom Res 10:379–387

    CAS  CrossRef  PubMed  Google Scholar 

  39. Kulikova O, Gualtieri G, Geurts R, Kim DJ et al (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58

    CAS  CrossRef  PubMed  Google Scholar 

  40. Cheng CH, Chung MC, Liu SM, Chen SK et al (2005) A fine physical map of the rice chromosome 5. Mol Gen Genom 274:337–345

    CAS  CrossRef  Google Scholar 

  41. Harper LC, Cande WZ (2000) Mapping a new frontier; development of integrated cytogenetic maps. Plants Funct Integr Genomics 1:89–98

    CAS  CrossRef  PubMed  Google Scholar 

  42. Cheng ZK, Buell CR, Wing RA, Gu M, Jiang J (2001) Toward a cytological characterization of the rice genome. Genome Res 11:2133–2141

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  43. Cheng ZK, Presting GG, Buell CR, Wing RA, Jiang J (2001) High resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Islam-Faridi MN, Childs KL, Klein PE, Hodnett G et al (2002) A molecular cytogenetic map of sorghum chromosome 1: fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161:345–353

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Cur Op Pl Biol 8:148–154

    CAS  CrossRef  Google Scholar 

  46. Lysak MA, Lexer C (2006) Towards the era of comparative evolutionary genomics in Brassicaceae. Pl Syst Evol 259:175–198

    CAS  CrossRef  Google Scholar 

  47. Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697

    CAS  CrossRef  PubMed  Google Scholar 

  48. Lysak MA, Pecinka A, Schubert I (2003) Recent progress in chromosome painting of Arabidopsis and related species. Chrom Res 11:195–204

    CAS  CrossRef  PubMed  Google Scholar 

  49. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  50. Lee YI, Chang FC, Chung MC (2011) Chromosome pairing affinities in interspecific hybrids reflect phylogenetic distances among lady’s slipper orchids (Paphiopedilum). Ann Bot 108:113–121

    PubMed Central  CrossRef  PubMed  Google Scholar 

  51. Chang YC, Shii CT, Lee YC, Chung MC (2013) Diverse chromosome complements in the functional gametes of interspecific hybrids of MT- and A-karyotype Lycoris spp. Plant Sys Evol 299:1141–1155

    CrossRef  Google Scholar 

  52. Anamthawat-Jonsson K, Reader SM (1995) Preannealing of total genomic DNA probes for simultaneous genomic in situ hybridization. Genome 38:814–816

    CAS  CrossRef  PubMed  Google Scholar 

  53. Anamthawat-Jonsson K, Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1990) Discrimination between closely related Triticeae species using genomic DNA as a probe. Theor Appl Genet 79:721–728

    CAS  CrossRef  PubMed  Google Scholar 

  54. Salvo-Garrido H, Travella S, Schwarzacher T, Harwood WA, Snape JW (2001) An efficient method for the physical mapping of transgenes in barley using in situ hybridization. Genome 44:104–110

    CAS  CrossRef  PubMed  Google Scholar 

  55. Chang KD, Fang SA, Chang FC, Chung MC (2010) Chromosomal conservation and sequence diversity of ribosomal RNA genes of two distant Oryza species. Genomics 96:181–190

    CAS  CrossRef  PubMed  Google Scholar 

  56. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7:1869–1885

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  57. Sang Y, Liang GH (2000) Comparative physical mapping of the 18S-5.8S-26S rDNA in three Sorghum species. Genome 43:918–922

    CAS  CrossRef  PubMed  Google Scholar 

  58. Murata M, Shibata F, Yokota E (2006) The origin, meiotic behavior, and transmission of a novel mini-chromosome in Arabidopsis thaliana. Chromosoma 115:311–319

    CrossRef  PubMed  Google Scholar 

  59. Lamb JC, Danilova T, Bauer MJ, Meyer J et al (2007) Single gene detection and karyotyping using small target FISH on maize somatic chromosomes. Genetics 175:1047–1058

    PubMed Central  CAS  CrossRef  PubMed  Google Scholar 

  60. Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive FISH signal detection using directly labeled probes produced by high concentration DNA polymerase nick translation in maize. Biotech Histochem 81:71–78

    CrossRef  PubMed  Google Scholar 

  61. de Jong HJ, Fransz P, Zabel P (1999) High-Resolution FISH in plants: techniques and applications. Trends Plant Sci 4:258–263

    CrossRef  Google Scholar 

  62. Higgins JD (2013) Analyzing meiosis in barley. Meth Mol Biol 990:135–144

    CrossRef  Google Scholar 

  63. Li X, Topp CN, Dawe RK (2012) Maize antibody procedures: immunolocalization and chromatin immunoprecipitation. In: Bass HW, Birchler JA (eds) Plant cytogenetics: genome structure and function. Springer, New York, pp 273–274

    Google Scholar 

  64. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. Bios Scientific Publishers, Oxford

    Google Scholar 

  65. Lysak MA, Fransz P, Schubert I (2006) Cytogenetic analyses of Arabidopsis. In: Salinas J, Sanchez-Serrano JJ (eds) Arabidopsis protocols, 2nd edn. Humana Press, Totowa, NJ, pp 173–186

    CrossRef  Google Scholar 

  66. Geurts RI, de Jong H (2013) Fluorescent in situ hybridization (FISH) on pachytene chromosomes as a tool for genome characterization. Meth Mol Biol 1069:15–24

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Chu Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chung, MC. (2015). Chromosome Techniques and FISH. In: Yeung, E., Stasolla, C., Sumner, M., Huang, B. (eds) Plant Microtechniques and Protocols. Springer, Cham. https://doi.org/10.1007/978-3-319-19944-3_17

Download citation