Skip to main content

Guiding Principles for Live Cell Imaging of Plants Using Confocal Microscopy

  • Chapter
  • First Online:
Plant Microtechniques and Protocols

Abstract

Live cell imaging using confocal microscope is an important and popular technique used by biologists to observe and understand biological events occuring in a living cell. It allows simultaneous understanding of the dynamics and functions of many cellular processes in living cells. The principles of live cell imaging are different from that of fixed cell imaging as in live cells, pigments and fluorescent biomolecules are present in their functional state unlike in fixed cell imaging where they are removed. This poses various challenges in live cell imaging, such as maintaining cell viability under high photobleaching conditions and the use of optimal fluorescent components to overcome the artifacts. Given the multitude of advantages of live cell imaging over conventional microscopy, the purpose of this chapter is to provide a basic understanding of the approaches used to visualize plant cells using confocal microscopy, discuss some common challenges encountered during live cell imaging and provide suggestions to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misri R, Pande S, Khopkar U (2006) Confocal laser microscope. Indian J Dermatol Venereol Leprol 72:394–397

    Article  PubMed  Google Scholar 

  2. Wymer CL, Beven AF, Boudonck K, Lloyd CW (1999) Confocal microscopy of plant cells. Meth Mole Biol 122:103–130

    CAS  Google Scholar 

  3. Paddock SW, Eliceiri KW (2014) Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques. Meth Mole Biol 1075:9–47

    Article  Google Scholar 

  4. Held MA, Boulaflous A, Brandizzi F (2008) Advances in fluorescent protein-based imaging for the analysis of plant endomembranes. Plant Physiol 147:1469–1481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Oreopoulos J, Berman R, Browne M (2014) Spinning-disk confocal microscopy: present technology and future trends. Meth Cell Biol 123:153–175

    Article  Google Scholar 

  6. Lam PY, Fischer RS, Shin WD, Waterman CM, Huttenlocher A (2014) Spinning disk confocal imaging of neutrophil migration in zebrafish. Meth Mole Biol 1124:219–233

    Article  Google Scholar 

  7. Sampathkumar A, Wightman R (2015) Live cell imaging of the cytoskeleton and cell wall enzymes in plant cells. Meth Mole Biol 1242:133–141

    Article  Google Scholar 

  8. Samuel MA, Tang W, Jamshed M, Northey J et al (2011) Proteomic analysis of Brassica stigmatic proteins following the self-incompatibility reaction reveals a role for microtubule dynamics during pollen responses. Mol Cell Proteomics 10(12):M 111 011338

    Article  PubMed  Google Scholar 

  9. Marcos D, Berleth T (2014) Dynamic auxin transport patterns preceding vein formation revealed by live-imaging of Arabidopsis leaf primordia. Front Plant Sci 5:235

    Article  PubMed Central  PubMed  Google Scholar 

  10. Sampathkumar A, Krupinski P, Wightman R, Milani P et al (2014) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3:e01967

    Article  PubMed Central  PubMed  Google Scholar 

  11. Muller F, Houben A, Barker PE, Xiao Y et al (2006) Quantum dots-a versatile tool in plant science? J Nanobiotechnol 4:5

    Article  Google Scholar 

  12. Smith AM, Gao X, Nie S (2004) Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80:377–385

    Article  CAS  PubMed  Google Scholar 

  13. Tan TTT, Khaw C, Ng MML (2010) Challenges and recent advances in live cell bioimaging. In: Méndez-Vilas, A (ed), Microscopy: science, technology, application and education. Formatex Research Center, Spain, pp. 1495–1505

    Google Scholar 

  14. Frigault MM, Lacoste J, Swift JL, Brown CM (2009) Live-cell microscopy—tips and tools. J Cell Sci 122:753–767

    Article  CAS  PubMed  Google Scholar 

  15. Kreft M, Stenovec M, Zorec R (2005) Focus-drift correction in time-lapse confocal imaging. Ann New York Acad Sci 1048:321–330

    Article  Google Scholar 

  16. Fang Y, Spector DL (2010) Live cell imaging of plants. Cold Spring Harb Protoc. doi:10.1101/pdb.top.68

    Google Scholar 

  17. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature biotechnol 22:1567–1572

    Article  CAS  Google Scholar 

  18. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nature methods 2:905–909

    Google Scholar 

  19. Mathur J, Radhamony R, Sinclair AM, Donoso A et al (2010) mEosFP-based green-to-red photoconvertible subcellular probes for plants. Plant Physiol 154:1573–1587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mathur J (2007) The illuminated plant cell. Trends Plant Sci 12:506–513

    Article  CAS  PubMed  Google Scholar 

  21. Mano S, Miwa T, Nishikawa S, Mimura T, Nishimura M (2008) The plant organelles database (PODB): a collection of visualized plant organelles and protocols for plant organelle research. Nucleic Acids Res 36 (Database issue):D929–D937

    Google Scholar 

  22. Mano S, Miwa T, Nishikawa S, Mimura T, Nishimura M (2009) Seeing is believing: on the use of image databases for visually exploring plant organelle dynamics. Plant Cell Physiol 50:2000–2014

    Article  CAS  PubMed  Google Scholar 

  23. Knight MM, Roberts SR, Lee DA, Bader DL (2003) Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. Am J Physiol Cell Physiol 284:C1083–C1089

    Article  Google Scholar 

  24. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  26. French AP, Mills S, Swarup R, Bennett MJ, Pridmore TP (2008) Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat Protoc 3:619–628

    Article  CAS  PubMed  Google Scholar 

  27. Haseloff J, Dormand EL, Brand AH (1999) Live imaging with green fluorescent protein. Meth Mole Biol 122:241–259

    CAS  Google Scholar 

  28. Shaw SL (2006) Imaging the live plant cell. Plant J 45:573–598.

    Article  CAS  PubMed  Google Scholar 

  29. Conchello JA, Lichtman JW (2005) Optical sectioning microscopy. Nat Method 2:920–931

    Article  CAS  Google Scholar 

  30. White J (2014) Reflecting on confocal microscopy: a personal perspective. Meth Mole Biol 1075:1–7

    Article  Google Scholar 

  31. Rigal A, Doyle SM, Robert S (2015) Live cell imaging of FM4-64, a tool for tracing the endocytic pathways in Arabidopsis root cells. Meth Mole Biol 1242:93–103

    Article  Google Scholar 

Download references

Acknowledgments

MAS is supported by the Natural Sciences and Engineering Research Council of Canada funding. SS is supported by the Eyes High International Doctoral Scholarship and a Global Open Doctoral Scholarship from the University of Calgary. We thank Muhammad Jamshed for his technical assistance with the confocal microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus A. Samuel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sankaranarayanan, S., Samuel, M. (2015). Guiding Principles for Live Cell Imaging of Plants Using Confocal Microscopy. In: Yeung, E., Stasolla, C., Sumner, M., Huang, B. (eds) Plant Microtechniques and Protocols. Springer, Cham. https://doi.org/10.1007/978-3-319-19944-3_13

Download citation

Publish with us

Policies and ethics