Skip to main content

Dynamical Systems and the Two-Dimensional Navier-Stokes Equations

  • Chapter
Dynamics of Partial Differential Equations

Part of the book series: Frontiers in Applied Dynamical Systems: Reviews and Tutorials ((FIADS,volume 3))

  • 1761 Accesses

Abstract

The focus of this chapter is on the application of dynamical systems ideas to the study of dissipative partial differential equations with a particular focus on the two-dimensional Navier-Stokes equations. The notion of dissipativity arises in physics where it is generally thought of as a dissipation of some “energy” associated with the system and such systems are contrasted with energy conserving systems like Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The situation is very different if one considers the equation on a bounded domain with periodic boundary conditions - see the discussion of the work of Foias and Saut [FS84a] in the following section.

  2. 2.

    The link between the attractor dimension and the Lyapunov exponents was first proposed by Kaplan and Yorke, [KY79], and is often known as the Kaplan-Yorke formula.

References

  1. Matania Ben-Artzi. Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Rational Mech. Anal., 128(4):329–358, 1994.

    Google Scholar 

  2. Peter W. Bates and Christopher K. R. T. Jones. Invariant manifolds for semilinear partial differential equations. In Dynamics reported, Vol. 2, volume 2 of Dynam. Report. Ser. Dynam. Systems Appl., pages 1–38. Wiley, Chichester, 1989.

    Google Scholar 

  3. Freddy Bouchet and E. Simonnet. Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett., 102(094504), 2009.

    Google Scholar 

  4. Margaret Beck and C. Eugene Wayne. Metastability and rapid convergence to quasi-stationary bar states for the 2D Navier-Stokes equations. Proc. Roy. Soc. Edin., Sec. A Math., 143(5):905–927, 2013.

    Google Scholar 

  5. Margaret Beck and C. Eugene Wayne. Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity. SIAM Review, 53(1):129–153 [Expanded and revised version of paper of the same title published originally in SIAM J. Appl. Dyn. Syst. 8 (2009), no. 3, 1043–1065], 2011.

    Google Scholar 

  6. P. Constantin and C. Foias. Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations. Comm. Pure Appl. Math., 38(1):1–27, 1985.

    Google Scholar 

  7. P. Constantin, C. Foias, B. Nicolaenko, and R. Temam. Integral manifolds and inertial manifolds for dissipative partial differential equations, volume 70 of Applied Mathematical Sciences. Springer-Verlag, New York, 1989.

    Google Scholar 

  8. P. Constantin, C. Foias, and R. Temam. On the dimension of the attractors in two-dimensional turbulence. Phys. D, 30(3):284–296, 1988.

    Google Scholar 

  9. Xu-Yan Chen, Jack K. Hale, and Bin Tan. Invariant foliations for C 1 semigroups in Banach spaces. J. Differential Equations, 139(2):283–318, 1997.

    Google Scholar 

  10. Eric A. Carlen and Michael Loss. Optimal smoothing and decay estimates for viscously damped conservation laws, with applications to the 2-D Navier-Stokes equation. Duke Math. J., 81(1):135–157 (1996), 1995. A celebration of John F. Nash, Jr.

    Google Scholar 

  11. Wen Deng. Pseudospectrum for Oseen vortices operators. IMRN, 2013(9):1985–1999, 2013.

    Google Scholar 

  12. Wen Deng. Etude du pseudo-spectre d’opérateurs non auto-adjoints liés à la mécanique des fluides. PhD thesis, Université Pierre et Marie Curie, 2012.

    Google Scholar 

  13. Charles R. Doering and J. D. Gibbon. Applied analysis of the Navier-Stokes equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  14. C. Foiaş and G. Prodi. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova, 39:1–34, 1967.

    Google Scholar 

  15. C. Foias and J.-C. Saut. Asymptotic behavior, as t → +, of solutions of Navier-Stokes equations and nonlinear spectral manifolds. Indiana Univ. Math. J., 33(3):459–477, 1984.

    Google Scholar 

  16. C. Foias and J.-C. Saut. On the smoothness of the nonlinear spectral manifolds associated to the Navier-Stokes equations. Indiana Univ. Math. J., 33(6):911–926, 1984.

    Google Scholar 

  17. Ciprian Foias, George R. Sell, and Roger Temam. Variétés inertielles des équations différentielles dissipatives. C. R. Acad. Sci. Paris Sér. I Math., 301(5):139–141, 1985.

    Google Scholar 

  18. Ciprian Foias, George R. Sell, and Roger Temam. Inertial manifolds for nonlinear evolutionary equations. J. Differential Equations, 73(2):309–353, 1988.

    Google Scholar 

  19. Isabelle Gallagher and Thierry Gallay. Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity. Math. Ann., 332(2):287–327, 2005.

    Google Scholar 

  20. Isabelle Gallagher, Thierry Gallay, and Francis Nier. Special asymptotics for large skew-symmetric perturbations of the harmonic oscillator. Int. Math. Res. Not. IMRN, (12):2147–2199, 2009.

    Google Scholar 

  21. Yoshikazu Giga, Tetsuro Miyakawa, and Hirofumi Osada. Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal., 104(3):223–250, 1988.

    Google Scholar 

  22. Thierry Gallay and C. Eugene Wayne. Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on \(\mathbf{R}^{2}\). Arch. Ration. Mech. Anal., 163(3):209–258, 2002.

    Google Scholar 

  23. Thierry Gallay and C. Eugene Wayne. Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. Comm. Math. Phys., 255(1):97–129, 2005.

    Google Scholar 

  24. Jack K. Hale. Asymptotic behavior of dissipative systems, volume 25 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1988.

    Google Scholar 

  25. Daniel Henry. Geometric theory of semilinear parabolic equations, volume 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1981.

    Google Scholar 

  26. Don A. Jones and Edriss S. Titi. Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations. Indiana Univ. Math. J., 42(3):875–887, 1993.

    Google Scholar 

  27. Y.-J. Kim and A. E. Tzavaras. Diffusive N-waves and metastability in the Burgers equation. SIAM J. Math. Anal., 33(3):607–633 (electronic), 2001.

    Google Scholar 

  28. James Kaplan and James Yorke. Chaotic behavior of multidimensional difference equations. In Heinz-Otto Peitgen and Hans-Otto Walther, editors, Functional Differential Equations and Approximation of Fixed Points, volume 730 of Lecture Notes in Mathematics, pages 204–227. Springer Berlin / Heidelberg, 1979. 10.1007/BFb0064319.

    Google Scholar 

  29. Elliott H. Lieb and Michael Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997.

    Google Scholar 

  30. Alexander Mielke. Locally invariant manifolds for quasilinear parabolic equations. Rocky Mountain J. Math., 21(2):707–714, 1991. Current directions in nonlinear partial differential equations (Provo, UT, 1987).

    Google Scholar 

  31. Milan Miklavčič. Applied functional analysis and partial differential equations. World Scientific Publishing Co. Inc., River Edge, NJ, 1998.

    MATH  Google Scholar 

  32. John Mallet-Paret. Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. Differential Equations, 22(2):331–348, 1976.

    Google Scholar 

  33. John Mallet-Paret and George R. Sell. Inertial manifolds for reaction diffusion equations in higher space dimensions. J. Amer. Math. Soc., 1(4):805–866, 1988.

    Google Scholar 

  34. Tetsuro Miyakawa and Maria Elena Schonbek. On optimal decay rates for weak solutions to the Navier-Stokes equations in \(\mathbb{R}^{n}\). In Proceedings of Partial Differential Equations and Applications (Olomouc, 1999), volume 126, pages 443–455, 2001.

    Google Scholar 

  35. Raymond Nagem, Guido Sandri, David Uminsky, and C. Eugene Wayne. Generalized Helmholtz-Kirchhoff model for two-dimensional distributed vortex motion. SIAM J. Appl. Dyn. Syst., 8(1):160–179, 2009.

    Google Scholar 

  36. A. Prochazka and D. I. Pullin. On the two-dimensional stability of the axisymmetric Burgers vortex. Phys. Fluids, 7(7):1788–1790, 1995.

    Google Scholar 

  37. James C. Robinson. Infinite-dimensional dynamical systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001. An introduction to dissipative parabolic PDEs and the theory of global attractors.

    Google Scholar 

  38. Lloyd N. Trefethen and Mark Embree. Spectra and pseudospectra. Princeton University Press, Princeton, NJ, 2005. The behavior of nonnormal matrices and operators.

    Google Scholar 

  39. David Uminsky, C. Eugene Wayne, and Alethea Barbaro. A multi-moment vortex method for 2D viscous fluids. J. Comput. Phys., 231(4):1705–1727, 2012.

    Google Scholar 

  40. A. Vanderbauwhede and G. Iooss. Center manifold theory in infinite dimensions. In Dynamics reported: expositions in dynamical systems, volume 1 of Dynam. Report. Expositions Dynam. Systems (N.S.), pages 125–163. Springer, Berlin, 1992.

    Google Scholar 

  41. Cédric Villani. Hypocoercivity. Mem. Amer. Math. Soc., 202(950):iv+141, 2009.

    Google Scholar 

  42. C. Eugene Wayne. Vortices and two-dimensional fluid motion. Notices Amer. Math. Soc., 58(1):10–19, 2011.

    Google Scholar 

  43. Z. Yin, D. C. Montgomery, and H. J. H. Clercx. Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of “patches” and “points”. Phys. Fluids, 15:1937–1953, 2003.

    Google Scholar 

Download references

Acknowledgements

The support of the author’s research by the National Science Foundation grants, DMS-0908093 and DMS-1311553 is gratefully acknowledged. For those parts of this survey which describe my own research it is a pleasure to thank my collaborators - Thierry Gallay and Margaret Beck for the theoretical results in Sections 2 and 3, and Alethea Barbaro, Ray Nagem, Guido Sandri, and David Uminsky for the numerical methods described in Section 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Eugene Wayne .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wayne, C.E. (2015). Dynamical Systems and the Two-Dimensional Navier-Stokes Equations. In: Dynamics of Partial Differential Equations. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-19935-1_1

Download citation

Publish with us

Policies and ethics