Sorting by Cuts, Joins and Whole Chromosome Duplications

  • Ron ZeiraEmail author
  • Ron Shamir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9133)


Genome rearrangement problems have been extensively studied due to their importance in biology. Most studied models assumed a single copy per gene. However, in reality duplicated genes are common, most notably in cancer. Here we make a step towards handling duplicated genes by considering a model that allows the atomic operations of cut, join and whole chromosome duplication. Given two linear genomes, \(\varGamma \) with one copy per gene, and \(\varDelta \) with two copies per gene, we give a linear time algorithm for computing a shortest sequence of operations transforming \(\varGamma \) into \(\varDelta \) such that all intermediate genomes are linear. We also show that computing an optimal sequence with fewest duplications is NP-hard.


SCJ Genome rearrangements Computational genomics 



We thank our referees for many helpful and insightful comments. This study was supported by the Israeli Science Foundation (grant 317/13) and the Dotan Hemato-Oncology Research Center at Tel Aviv University. RZ was supported in part by fellowships from the Edmond J. Safra Center for Bioinformatics at Tel Aviv University and from the Israeli Center of Research Excellence (I-CORE) Gene Regulation in Complex Human Disease (Center No 41/11).


  1. 1.
    Bader, M.: Sorting by reversals, block interchanges, tandem duplications, and deletions. BMC Bioinform. 10(Suppl 1), S9 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bader, M.: Genome rearrangements with duplications. BMC Bioinform. 11(Suppl 1), S27 (2010)CrossRefGoogle Scholar
  3. 3.
    Bayani, J., Selvarajah, S., Maire, G., Vukovic, B., Al-Romaih, K., Zielenska, M., Squire, J.A.: Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin. Cancer Biol. 17(1), 5–18 (2007)CrossRefGoogle Scholar
  4. 4.
    Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  5. 5.
    Biller, P., Feijão, P., Meidanis, J.: Rearrangement-based phylogeny using the single-cut-or-join operation. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(1), 122–134 (2013)CrossRefGoogle Scholar
  6. 6.
    Blanc, G., Barakat, A., Guyot, R., Cooke, R., Delseny, M.: Extensive duplication and reshuffling in the arabidopsis genome. Plant cell 12(7), 1093–1101 (2000)CrossRefGoogle Scholar
  7. 7.
    Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J. Discrete Math. 26(3), 1148–1180 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Caprara, A.: Sorting by reversals is difficult. In: Proceedings of the First Annual International Conference on Computational Molecular Biology (RECOMB), pp. 75–83, New York, USA (1997)Google Scholar
  9. 9.
    Christie, D.A.: Sorting permutations by block-interchanges. Inf. Process. Lett. 60(4), 165–169 (1996)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., et al.: Introduction to algorithms, vol. 2. MIT press, Cambridge (2001) zbMATHGoogle Scholar
  11. 11.
    Dias, Z., Meidanis, J.: Genome rearrangements distance by fusion, fission, and transposition is easy. In: International Symposium on String Processing and Information Retrieval, pp. 250. IEEE Computer Society (2001)Google Scholar
  12. 12.
    Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–1329 (2011)CrossRefGoogle Scholar
  13. 13.
    Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009)zbMATHCrossRefGoogle Scholar
  14. 14.
    Hannenhalli, S.: Polynomial-time algorithm for computing translocation distance between genomes. Discrete Appl. Math. 71(1–3), 137–151 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing (STOC), vol. 46, pp. 178–189, New York, USA (1995)Google Scholar
  16. 16.
    Kováč, J.: On the complexity of rearrangement problems under the breakpoint distance. J. Comput. Biol. 21(1), 1–15 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lu, C.L., Huang, Y.L., Wang, T.C., Chiu, H.-T.: Analysis of circular genome rearrangement by fusions, fissions and block-interchanges. BMC Bioinform. 7(1), 295 (2006)CrossRefGoogle Scholar
  18. 18.
    Mira, C.V.G., Meidanis, J.: Sorting by block-interchanges and signed reversals. ITNG 7, 670–676 (2007)Google Scholar
  19. 19.
    Ozery-Flato, M., Shamir, R.: Sorting cancer karyotypes by elementary operations. J. Comput. Biol. 16(10), 1445–1460 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Plesnik, J.: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Inf. Process. Lett. 8(4), 199–201 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Savard, O.T., Gagnon, Y., Bertrand, D., El-Mabrouk, N.: Genome halving and double distance with losses. J. Comput. Biol. 18(9), 1185–1199 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under DCJ, insertion and deletion. BMC Bioinform. 13(Suppl 19), S13 (2012)CrossRefGoogle Scholar
  23. 23.
    Shao, M., Lin, Y., Moret, B.: Sorting genomes with rearrangements and segmental duplications through trajectory graphs. BMC Bioinform. 14(Suppl 15), S9 (2013)CrossRefGoogle Scholar
  24. 24.
    Shao, M., Lin, Y., Moret, B.: An exact algorithm to compute the DCJ distance for genomes with duplicate genes. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 280–292. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  25. 25.
    Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinform. 10(1), 120 (2009)CrossRefGoogle Scholar
  26. 26.
    Warren, R., Sankoff, D.: Genome aliquoting revisited. J. Comput. Biol. 18(9), 1065–1075 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Tel-Aviv UniversityTel-AvivIsrael

Personalised recommendations