Reporting Consecutive Substring Occurrences Under Bounded Gap Constraints

  • Gonzalo NavarroEmail author
  • Sharma V. Thankachan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9133)


We study the problem of indexing a text \(T[1\dots n]\) such that whenever a pattern \(P[1\dots p]\) and an interval \([\alpha , \beta ]\) comes as a query, we can report all pairs \((i, j)\) of consecutive occurrences of \(P\) in \(T\) with \(\alpha \le j-i \le \beta \). We present an \(O(n\log n)\) space data structure with optimal \(O(p+k)\) query time, where \(k\) is the output size.


Query Time Suffix Tree Heavy Path Consecutive Occurrence Pattern Match Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, New York (1997)zbMATHCrossRefGoogle Scholar
  2. 2.
    Aluru, S. (ed.): Handbook of Computational Molecular Biology. CRC Computer and Information Science Series. Chapman and Hall, London (2005)Google Scholar
  3. 3.
    Ohlebusch, E.: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Reconstruction. Oldenbusch Verlag, Bremen (2013)Google Scholar
  4. 4.
    Iliopoulos, C.S., Rahman, M.S.: Indexing factors with gaps. Algorithmica 55, 60–70 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bille, P., Gørtz, I.L.: Substring range reporting. Algorithmica 69, 384–396 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bille, P., Gørtz, I.L., Vildhøj, H.W., Vind, S.: String indexing for patterns with wildcards. Theor. Comput. Syst. 55, 41–60 (2014)zbMATHCrossRefGoogle Scholar
  7. 7.
    Keller, O., Kopelowitz, T., Lewenstein, M.: Range non-overlapping indexing and successive list indexing. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 625–636. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  8. 8.
    Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proceedings of 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 657–666 (2002)Google Scholar
  9. 9.
    Brodal, G.S., Lyngsø, R.B., Pedersen, C.N.S., Stoye, J.: Finding maximal pairs with bounded gap. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 134–149. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  10. 10.
    Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa, USA, 15–17 October, pp. 1–11 (1973)Google Scholar
  11. 11.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26, 362–391 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Tao, Y.: Dynamic ray stabbing. ACM Trans. Algorithms 11, 11 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal static range reporting in one dimension. In: Proceedings on 33rd Annual ACM Symposium on Theory of Computing, Heraklion, Crete, Greece, 6–8 July, pp. 476–482 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center of Biotechnology and Bioengineering, Department of Computer ScienceUniversity of ChileSantiagoChile
  2. 2.School of Computational Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations