Partition into Heapable Sequences, Heap Tableaux and a Multiset Extension of Hammersley’s Process

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9133)


We investigate partitioning of integer sequences into heapable subsequences (previously defined and established by Byers et al.). We show that an extension of patience sorting computes the decomposition into a minimal number of heapable subsequences (MHS). We connect this parameter to an interactive particle system, a multiset extension of Hammersley’s process, and investigate its expected value on a random permutation. In contrast with the (well studied) case of the longest increasing subsequence, we bring experimental evidence that the correct asymptotic scaling is \(\frac{1+\sqrt{5}}{2}\cdot \ln (n)\). Finally we give a heap-based extension of Young tableaux, prove a hook inequality and an extension of the Robinson-Schensted correspondence.


Heapable sequences Hammersley process Heap tableaux 


  1. 1.
    Aldous, D., Diaconis, P.: Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theory Relat. Fields 103(2), 199–213 (1995)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aldous, D., Diaconis, P.: Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. Am. Math. Soci. 36(4), 413–432 (1999)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Archibald, M., Martínez, C.: The hiring problem and permutations. DMTCS Proc. 01, 63–76 (2009)Google Scholar
  4. 4.
    Byers, J., Heeringa, B., Mitzenmacher, M., Zervas, G.: Heapable sequences and subseqeuences. In: Proceedings of ANALCO, pp. 33–44 (2011)Google Scholar
  5. 5.
    Broder, A., Kirsch, A., Kumar, R., Mitzenmacher, M., Upfal, E., Vassilvitskii, S.: The hiring problem and Lake Wobegon strategies. SIAM J. Comput. 39(4), 1233–1255 (2009)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cator, E., Groeneboom, P.: Hammersley’s process with sources and sinks. Ann. Probab. 33(3), 879–903 (2005)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Frame, J.S., Robinson, G., Thrall, R.M.: The hook graphs of the symmetric group. Canad. J. Math. 6(316), C324 (1954)MathSciNetGoogle Scholar
  8. 8.
    Hammersley, J.M.: A few seedlings of research. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Theory of Statistics, vol. 1 (1972)Google Scholar
  9. 9.
    Hivert, F.: An Introduction to Combinatorial Hopf Algebras Physics and Theoretical Computer Science: From Numbers and Languages to (Quantum) Cryptography Security. IOS Press (2007)Google Scholar
  10. 10.
    Groenenboom, P.: Hydrodynamical models for analyzing longest increasing sequences. J. Comput. Appl. Math. 142, 83–105 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Istrate, G., Bonchiş, C.: Hammersley’s process with multiple lifelines, and a conjecture on decomposing permutations into heapable sequences (manuscript in preparation, 2015)Google Scholar
  12. 12.
    Istrate, G., Bonchiş, C.: Partition into heapable sequences, heap tableaux and a multiset extension of Hammersley’s process.
  13. 13.
    Knuth, D.: The Art of Computer Programming. Sorting and Searching, vol. 3. Addison Wesley, Redwood City (1998)Google Scholar
  14. 14.
    Levcopoulos, C., Petersson, O.: Sorting shuffled monotone sequences. Inf. Comput. 112(1), 37–50 (1994)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Logan, B.F., Shepp, L.A.: A variational problem for random Young tableaux. Adv. Math. 26(2), 206–222 (1977)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Mallows, C.L.: Patience sorting. SIAM Rev. 5(4), 375–376 (1963)CrossRefGoogle Scholar
  17. 17.
    Montoya, L.: A rapidly mixing stochastic system of finite interacting particles on the circle. Stoch. Process. Appl. 67(1), 69–99 (1997)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Romik, D.: The Surprising Mathematics of Longest Increasing Sequences. Cambridge University Press, Cambridge (2014)Google Scholar
  19. 19.
    Schensted, C.: Longest increasing and decreasing subsequences. Canad. J. Math. 13(2), 179–191 (1961)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Szpankowski, W.: Average Case Analysis of Algorithms on Sequences. Wiley, New York (2001)MATHCrossRefGoogle Scholar
  21. 21.
    Steele, J.M.: Probability Theory and Combinatorial Optimization. SIAM, Philadelphia (1997)MATHCrossRefGoogle Scholar
  22. 22.
    Vershik, A., Kerov, S.: Asymptotics of Plancherel measure of symmetric group and limit form of Young tables. Dokl. Akad. Nauk SSSR 233(6), 1024–1027 (1977)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceWest University of TimişoaraTimişoaraRomania
  2. 2.e-Austria Research InstituteTimişoaraRomania

Personalised recommendations