Skip to main content
  • 4885 Accesses

Abstract

Enzyme and substrate form an ES-complex, which reacts further to enzyme and product. This process requires time, so each enzyme molecule can only handle a certain number of substrate molecules per unit time, called the turnover-number k cat. This number multiplied with the number of enzyme molecules is the limiting reaction velocity, V max, reached only at infinite substrate concentration. At [S] <  enzyme molecules need time to find a new substrate after the release of product, hence v < V max.

Measuring the enzyme concentration in biological fluids is of great clinical significance.

Some enzymes are produced as inactive precursors and activated only when needed.

For some enzymes, the molecular mechanism of their action has been determined. If there are several substrates and/or products, substrates can bind to, and products be released from enzymes in specific order or randomly. Reaction mechanism is determined by keeping the concentration of one substrate constant, while varying the second. Different enzyme mechanisms result in characteristic Lineweaver-Burk-plots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Henri’s version of the HMM equation tries to take care of the increasing product concentration by treating the product as a competitive inhibitor of the reaction:

    $$\displaystyle{ v = \frac{V _{\mathrm{max}}([S]_{0} - [P])} {1 + \frac{[S]_{0}-[P]} {K_{\mathrm{s}}} + \frac{[P]} {K_{p}}} }$$
    (5.28)

    with K s and K p the dissociation constants for substrate and product, respectively. [S]0 is the substrate concentration at the start of the experiment.

References

  1. W.J. Albery, J.R. Knowles, Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15, 5631–5640 (1976). doi: 10.1021/bi00670a032

    Article  CAS  PubMed  Google Scholar 

  2. G.E. Briggs, J.B.S. Haldane, A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. W.W. Cleland, The kinetics of enzyme-catalyzed reactions with two or more substrates or products 1. Nomenclature and rate equations. Biochim. Biophys. Acta 67, 104–137 (1963). doi: 10.1016/0926-6569(63) 90211-6

    Article  CAS  PubMed  Google Scholar 

  4. R.G. Duggleby, Quantitative analysis of the time courses of enzyme-catalyzed reactions. Methods 24(2), 168–174 (2001). doi: 10. 1006/meth.2001.1177

    Google Scholar 

  5. R. Eisenthal, A. Cornish-Bowden, The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem. J. 139(3), 715–720 (1974). URL http://www.biochemj.org/bj/139/0715/1390715.pdf

  6. E. Fischer, Einfluss der Configuration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges. 27(3), 2985–2993 (1894). doi: 10.1002/cber. 18940270364

    Article  CAS  Google Scholar 

  7. J.B.S. Haldane, Graphical methods in enzyme chemistry. Nature 179, 832 (1957). doi: 10.1038/179832b0

    Article  Google Scholar 

  8. J.B.S. Haldane, K.G. Stern, Allgemeine Chemie der Enzyme (Steinkopf, Dresden, 1932)

    Google Scholar 

  9. V. Henri, Theorie generale de l’action de quelques diastases. Compt. rend. hebd. Acad. Sci. Paris 135, 916–919 (1902). URL http://gallica.bnf.fr/ark:/12148/bpt6k64607148/f1257.image

  10. D.E. Koshland, Enzyme flexibility and enzyme action. J. Cell. Comp. Physiol. 54(Suppl. 1), 245 (1959). doi: 10.1002/jcp.1030540420

    Google Scholar 

  11. H.J. Lee, I.B. Wilson, Enzymic parameters: Measurement of V and Km. Biochim. Biophys. Acta 242(3), 519–522 (1971)

    Article  CAS  PubMed  Google Scholar 

  12. D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963). URL http://137.204.42.130/~bittelli/materiale_lettura_fisica_terreno/marquardt_63.pdf

  13. L. Michaelis, M.L. Menten, Die Kinetik der Invertin-Wirkung. Biochem. Z. 49, 333–369 (1913). URL http://path.upmc.edu/divisions/chp/PDF/Michaelis-Menten_Kinetik.pdf

  14. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965). doi: 10.1093/comjnl/7.4.308

    Article  Google Scholar 

  15. J.E. Nielsen, J.A. McCammon, Calculating pKa values in enzyme active sites. Protein Sci. 12, 1894–1901 (2003). doi: 10.1110/ps.03114903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. B.A. Orsi, K.F. Tipton, Kinetic analysis of progress curves. Meth. Enzymol. 63, 159–183 (1979). doi: 10.1016/0076-6879(79)63010-0

    Article  CAS  PubMed  Google Scholar 

  17. O. Warburg, W. Christian, Pyridin, der wasserstoffübertragende Bestandteil von Gährungsfermenten. Biochem. Z. 287, 291–328 (1936). doi: 10.1002/hlca.193601901199

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buxbaum, E. (2015). Enzyme Kinetics and Mechanism. In: Fundamentals of Protein Structure and Function. Springer, Cham. https://doi.org/10.1007/978-3-319-19920-7_5

Download citation

Publish with us

Policies and ethics