Peptides and proteins are made by condensation of amino acids, forming peptide bonds. The sequence of amino acids in a protein is called its primary structure. Secondary structure is determined by the dihedral angles ϕ, ψ of the peptide bonds, the tertiary structure by the folding of protein chains in space. Association of folded polypeptide molecules to complex functional proteins results in quaternary structure. Proteins can be further modified by posttranslational addition of small molecules.


Cystic Fibrosis Transmembrane Conductance Regulator Peptide Bond Osteogenesis Imperfecta Disulphide Bond Epidermolysis Bullosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Albers, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, J. Wilson, T. Hunt, Molecular Biology of the Cell, 5th edn. (Garland Science, New York, 2008). ISBN 0-8153-4105-9Google Scholar
  2. 2.
    C. Anfinsen, Principles that govern the folding of protein chains. Science 181, 223–230 (1973). doi: 10.1126/science.181.4096.223CrossRefPubMedGoogle Scholar
  3. 3.
    R. Bhattacharyya, P. Chakrabarti, Stereospecific interaction of proline residues in protein structures and complexes. J. Mol. Biol. 331, 925–940 (2003). doi: 10.1016/S0022-2836(03)00759-9CrossRefPubMedGoogle Scholar
  4. 4.
    N. Boggetto, M. Reboud-Ravaux, Dimerization inhibitors of HIV-1 protease. Biol. Chem. 383, 1321–1324 (2002). doi: 10.1515/BC.2002.150CrossRefPubMedGoogle Scholar
  5. 5.
    C. Choudhary, C. Kumar, F. Gnad, M.L. Nielsen, M. Rehman, T.C. Walther, J.V. Olsen, M. Mann, Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942), 834–840 (2009). doi: 10.1126/science.1175371CrossRefPubMedGoogle Scholar
  6. 6.
    S. Clarke. Protein methylation. Curr. Opin. Cell Biol., 5, 977–983 (1993). doi: 10.1016/0955-0674(93)90080-ACrossRefPubMedGoogle Scholar
  7. 7.
    International Human Genome Sequencing Consortium, Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). doi: 10.1038/35057062Google Scholar
  8. 8.
    International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004). doi: 10.1038/nature03001Google Scholar
  9. 9.
    C. Darwin, On the Origin of Species by Means of Natural Selection, or The Preservation of Favoured Races in the Struggle for Life (John Murray, London, facsimile edition, 1859). ISBN 978-0-6746-3752-8Google Scholar
  10. 10.
    M.O. Dayhoff, Computer analysis of protein evolution. Sci. Am. 221(1), 86–95 (1969). doi: 10.1038/scientificamerican0769-86CrossRefPubMedGoogle Scholar
  11. 11.
    J.M. Denu, Linking chromatin function with metabolic networks. Sir-2 family of NAD+-dependent deacetylases. TIBS 28, 41–48 (2003). doi: 10.1016/S0968-0004(02) 00005-1Google Scholar
  12. 12.
    J.M. Forbes, M.E. Cooper, Mechanisms of diabetic complications. Physiol. Rev. 93(1), 137–188 (2013). doi: 10.1152/physrev.00045.2011CrossRefPubMedGoogle Scholar
  13. 13.
    F.S. Gimble, Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol. Let. 185(2), 99–107 (2000). doi: 10.1111/j.1574-6968.2000.tb09046.xCrossRefGoogle Scholar
  14. 14.
    J.P. Gogarten, A.G. Senejani, O. Zhaxybayeva, L. Olendzenski, E. Hilario, Inteins: structure, function, and evolution. Annu. Rev. Microbiol. 56(1), 263–287 (2002). doi: 10.1146/annurev.micro.56.012302. 160741CrossRefPubMedGoogle Scholar
  15. 15.
    E. Granseth, G. van Heijne, A. Elofsson, A study of the membrane-water interface region of membrane proteins. J. Mol. Biol. 346, 377–385 (2005). doi: 10.1016/j.jmb.2004.11.036CrossRefPubMedGoogle Scholar
  16. 16.
    V.H. Haase, Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 27(1), 41–43 (2013). doi: 10.1016/j.blre.2012.12.003PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    C. Hadley, D.T. Jones, A systematic comparison of protein structure classifications: SCOP, CATH and FSSP. Structure 7(9), 1099–1112 (1999). doi: 10.1016/S0969-2126(99)80177-4PubMedGoogle Scholar
  18. 18.
    B.K. Ho, A. Thomas, R. Brasseur, Revisiting the Ramachandran plot: Hard-sphere repulsion, electrostatics and H-bonding in the α-helix. Protein Sci. 12(11), 2508–2522 (2003). doi: 10.1110/ps.03235203PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    W. Kabsch, C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983). doi: 10.1002/bip.360221211. URL
  20. 20.
    C. Levinthal, How to fold graciously. In Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting Held at Allerton House, Monticello, Illinois, ed. by J.T.P. DeBrunner, E. Munck, pp. 22–24 (University of Illinois Press, Urbana, IL, 1969). URL
  21. 21.
    H. Lodish et al., Molecular Cell Biology, 7th edn. (W.H. Freeman and Company, New York, 2012). ISBN 978-1-4292-3413-9Google Scholar
  22. 22.
    C. Luevano-Contreras, K. Chapman-Novakofski, Dietary advanced glycation end products and aging. Nutrients 2(12), 1247–1265 (2010). doi: 10.3390/nu2121247PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Y. Matsunaga, H. Fujisaki, T. Terada, T. Furuta, K. Moritsugu, A. Kidera, Minimum free energy path of ligand-induced transition in adenylate kinase. PLoS Comput. Biol. 8(6), e1002555 (2012). doi: 10. 1371/journal.pcbi.1002555Google Scholar
  24. 24.
    R.V. Pappu, R. Srinivasan, G.D. Rose, The Flory isolated-pair hypothesis is not valid for polypeptide chains: Implications for protein folding. Proc. Natl. Acad. Sci. USA 97, 12565–12570 (2000). doi: 10. 1073/pnas.97.23.12565Google Scholar
  25. 25.
    H. Paulus, Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–496 (2000). doi: 10.1146/annurev.biochem. 69.1.447CrossRefPubMedGoogle Scholar
  26. 26.
    F. Piarulli, G. Sartore, A. Lapolla, Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update. Acta Diabetol. 50(2), 101–110 (2013). doi: 10.1007/s00592-012-0412-3PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    G.N. Ramachandran, V. Sasisekharan, Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–437 (1968). doi: 10.1016/ S0065-3233(08)60402-7CrossRefPubMedGoogle Scholar
  28. 28.
    J.S. Richardson, The anatomy and taxonomy of protein structures. Adv. Protein Chem. 34, 167–339 (1981). doi: 10.1016/S0065-3233(08)60520-3CrossRefPubMedGoogle Scholar
  29. 29.
    D.R. Sell, V.M. Monnier, Molecular basis of arterial stiffening: Role of glycation. Gerontology 58(3), 227–237 (2012). doi: 10.1159/000334668CrossRefPubMedGoogle Scholar
  30. 30.
    J.G. Snedeker, A. Gautieri, The role of collagen crosslinks in ageing and diabetes - the good, the bad, and the ugly. Muscles Ligaments Tendons J. 4(3), 303–308 (2014). URL
  31. 31.
    G. Sorci, F. Riuzzi, I. Giambanco, R. Donato, RAGE in tissue homeostasis, repair and regeneration. Biochim. Biophys. Acta 1833(1), 101–109 (2013). doi: 10.1016/j.bbamcr.2012.10.021CrossRefPubMedGoogle Scholar
  32. 32.
    F. Takagi, N. Koga, S. Takada, How protein thermodynamics and folding mechanism are altered by the chaperonin cage: Molecular simulations. Proc. Natl. Acad. Sci. USA 100, 11367–11372 (2003). doi: 10.1073/pnas.1831920100PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    H.A. Tissenbaum, L. Guarente, Increased dosage of sir-2 gene extends lifespan in Caenorabditis elegans. Nature 410, 227–230 (2001). doi: 10.1038/35065638Google Scholar
  34. 34.
    J.S. Valastyan, S. Lindquist, Mechanisms of protein-folding diseases at a glance. Dis. Models Mech. 7(1), 9–14 (2014). doi: 10.1242/dmm.013474CrossRefGoogle Scholar
  35. 35.
    J.C. Venter et al., The sequence of the human genome. Science 291, 1304–1351 (2001). doi: 10.1126/science.1058040CrossRefPubMedGoogle Scholar
  36. 36.
    R.D. Vierstra, The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol. 160(1), 2–14 (2012). doi: 10.1104/pp.112. 200667Google Scholar
  37. 37.
    S. Walter, J. Buchner, Molecular chaperones – cellular machines for protein folding. Angew. Chemie Int. Ed. 41, 1098–1113 (2002). doi: 10.1002/1521-3773(20020402)41:7∖ %3C1098::AID-ANIE1098∖%3E3.0.CO;2-9Google Scholar
  38. 38.
    Q. Wang, Y. Zhang, C. Yang, H. Xiong, Y. Lin, J. Yao, H. Li, L. Xie, W. Zhao, Y. Yao, Z.-B. Ning, R. Zeng, Y. Xiong, K.-L. Guan, S. Zhao, G.-P. Zhao, Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 237, 1004–1007 (2010). doi: 10.1126/science.1179687CrossRefGoogle Scholar
  39. 39.
    C.M. Wilmot, J.M. Thornton, Analysis and prediction of the different types of \(\upbeta\)-turns in proteins. J. Mol. Biol. 203, 221–232 (1988). doi: 10.1016/ 0022-2836(88)90103-9CrossRefPubMedGoogle Scholar
  40. 40.
    M.D. Yoder, F. Jurnak, The parallel \(\upbeta\) helix and other coiled folds. FASEB J. 9(5), 335–342 (1995). URL
  41. 41.
    A.Q. Zhou, C.S. O’Hern, L. Regan, Revisiting the Ramachandran plot from a new angle. Protein Sci. 20(7), 1166–1171 (2011). doi: 10.1002/ pro.644PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    L. Zhou, Y. Zeng, H. Li, Y. Li, J. Shi, W. An, S.M. Hancock, F. He, L. Qin, J. Chin, P. Yang, X. Chen, Q. Lei, Y. Xiong, K.-L. Guan, Regulation of cellular metabolism by protein lysine acetylation. Science 237, 1000–1004 (2010). doi: 10.1126/science.1179689CrossRefGoogle Scholar
  43. 43.
    R. Zwanzig, A. Szabo, B. Bagchi, Levinthal’s paradox. Proc. Natl. Acad. Sci. USA 89, 20–22 (1992). doi: 10.1073/pnas.89.1.20PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Engelbert Buxbaum
    • 1
  1. 1.KevelaerGermany

Personalised recommendations