Skip to main content
  • 4545 Accesses

Abstract

Mitochondria contain their own DNA, they divide throughout interphase and are distributed randomly between daughter cells during cell division. Most mitochondrial proteins are encoded in the nucleus and produced in the cytosol. They are then imported into the mitochondria via the TOM/TIM transport system, which recognises them by a specific localisation sequence which is cleaved off once a protein has entered a mitochondrium. Mitochondrial lipids are made by the ER. Similar pathways exist for plastids, peroxisomes and nucleus. However, nuclear transport sequences are not removed after transport as the nuclear membrane breaks down during mitosis, releasing nuclear proteins into the cytosol. They need to be reimported afterwards. Insertion of proteins into the ER occurs cotranslationally. While they are transported into the ER, proteins are glycosylated. The oligosaccharides added to Thr or Ser or Hyl (O-linked) are simple, but some are important as blood group antigens. Very complex sugar trees are added to Asn (N-linked). These trees play an important role in the quality control of the ER, which prevents the production of misfolded proteins. Additional sugar residues are added during the protein’s passage through the Golgi apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Aebi, N-linked protein glycosylation in the ER. Biochim. Biophys. Acta 1833(11), 2430–2437 (2013). doi: 10.1016/j.bbamcr.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  2. T. Ast, G. Cohen, M. Schuldiner, A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152(5), 1134–1145 (2013). doi: 10.1016/j.cell.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  3. J.J. Barrott, T.A.J. Haystead, Hsp90, an unlikely ally in the war on cancer. FEBS J. 280(6), 1381–1396 (2013). doi: 10.1111/febs.12147

    Article  CAS  PubMed  Google Scholar 

  4. J.A. Boelens, S. Lust, F. Offner, M.E. Bracke, B.W. Vanhoecke, The endoplasmic reticulum: A target for new anticancer drugs. In Vivo 21(2), 215–226 (2007). URL http://iv.iiarjournals.org/content/21/2/215.full.pdf+html

  5. E. Buxbaum, Biophysical Chemistry of Proteins: An Introduction to Laboratory Methods (Springer, New York, 2011). ISBN 978-1-4419-7250-7

    Book  Google Scholar 

  6. C.M. Cabral, Y. Liu, R.N. Sifers, Dissecting glycoprotein quality control in the secretory pathway. Trends Bichem. Sci. 26, 619–624 (2001). doi: 10.1016/S0968-0004(01)01942-9

    Article  CAS  Google Scholar 

  7. D. Calo, L. Kaminski, J. Eichler, Protein glycosylation in archaea: Sweet and extreme. Glycobiology 20(9), 1065–1076 (2010). doi: 10.1093/glycob/cwq055

    Article  CAS  PubMed  Google Scholar 

  8. B. Cylwik, K. Lipartowska, L. Chrostek, E. Gruszewska, Congenital disorders of glycosylation. Part I. Defects of protein N-glycosylation. Acta Biochim. Pol. 60(2), 151–161 (2013a). URL http://www.actabp.pl/pdf/3_2013/361.pdf

  9. B. Cylwik, K. Lipartowska, L. Chrostek, E. Gruszewska, Congenital disorders of glycosylation. Part II. Defects of protein O-glycosylation. Acta Biochim. Pol. 60(3), 361–368 (2013b). URL http://www.actabp.pl/pdf/3_2013/361.pdf

  10. T. de Beer, J.F.G. Vliegenthart, A.S. Loeffler, J. Hofsteenge, The hexopyranosyl residue that is C-glycosidically linked to the side chain of tryptophan-7 in human RNase us is α-mannopyranose. Biochemistry 34(37), 11785–11789 (1995). doi: 10.1021/bi00037a016

    Article  PubMed  Google Scholar 

  11. A. Dell, A. Galadari, F. Sastre, P. Hitchen, Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int. J. Microbiol. 2010, Article ID 148178 (2010). doi: 10.1155/2010/148178

  12. V. Denic, A portrait of the GET pathway as a surprisingly complicated young man. Trends Biochem. Sci. 37(10), 411–417 (2012). doi: 10.1016/j.tibs.2012.07.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. J. Dudley, H. Byun, Y. Gou, A. Zook, M. Lozano, ERAD and how viruses exploit it. Frontiers Microbiol. 5, Art. No. 330 (2014). doi: 10.3389/fmicb.2014.00330

    Google Scholar 

  14. T. Endo, K. Yamano, Transport of proteins across or into the mitochondrial outer membrane. Biochim. Biophys. Acta 1803(6), 706–714 (2010). doi: 10.1016/j.bbamcr.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  15. S.P. Ferris, V.K. Kodali, R.J. Kaufman, Glycoprotein folding and quality-control mechanisms in protein-folding diseases. Dis. Models Mech. 7(3), 331–341 (2014). doi: 10.1242/dmm.014589

    Article  Google Scholar 

  16. K.S. George, S. Wu, Lipid raft: A floating island of death or survival. Toxicol. Appl. Pharmacol. 259(3), 311–319 (2012). doi: 10.1016/j.taap.2012.01.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Y. Ishibashi, A. Kohyama-Koganeya, Y. Hirabayashi, New insights on glucosylated lipids: Metabolism and functions. Biochim. Biophys. Acta 1831(9), 1475–1485 (2013). doi: 10.1016/j.bbalip.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  18. E. Klotzsch, G.J. SchĂĽtz, A critical survey of methods to detect plasma membrane rafts. Phil. Trans. Roy. Soc. Lond. B: Biol. Sci. 368(1611), (2012). doi: 10.1098/rstb.2012.0033

    Google Scholar 

  19. B. Franz Lang, Mitochondria and the origin of eukaryotes, in ed.by W. Löffelhardt, Endosymbiosis (Springer, Vienna, 2014), pp. 3–18. ISBN 978-3-7091-1302-8. doi: 10.1007/978-3-7091-1303-5_1

  20. M. Mehnert, T. Sommer, E. Jarosch, ERAD ubiquitin ligases. BioEssays 32(10), 905–913 (2010). doi: 10.1002/bies.201000046

    Article  CAS  PubMed  Google Scholar 

  21. P.G. Needham, J.L. Brodsky, How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. Biochim. Biophys. Acta 1833(11), 2447–2457 (2013). doi: 10.1016/j.bbamcr.2013.03.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. H. Nothaft, C.M. Szymanski, Bacterial protein N-glycosylation: New perspectives and applications. J. Biol. Chem. 288(10), 6912–6920 (2013). doi: 10.1074/jbc.R112.417857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. D.M. Owen, K. Gaus, Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy. Front. Plant Sci. 4(503), (2013). doi: 10.3389/fpls.2013.00503

    Google Scholar 

  24. A.J. Parodi, Protein glycosylation and its role in protein folding. Annu. Rev. Biochem. 69, 69–93 (2000). doi: 10.1146/annurev.biochem.69.1.69

    Article  CAS  PubMed  Google Scholar 

  25. A. Ruggiano, O. Foresti, P. Carvalho, ER-associated degradation: Protein quality control and beyond. J. Cell Biol. 204(6), 869–879 (2014). doi: 10.1083/jcb.201312042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. B. Schiller, A. Hykollari, S. Yan, K. Paschinger, I.B.H. Wilson, Complicated N-linked glycans in simple organisms. Biol. Chem. 393(8), 661–673 (2012). doi: 10.1515/hsz-2012-0150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. A. Shah, D. Chen, A.R. Boda, L.J. Foster, M.J. Davis, M.M. Hill, Raftprot: mammalian lipid raft proteome database. Nucleic Acids Res. (2014). doi: 10.1093/nar/gku1131

    PubMed  Google Scholar 

  28. S. Shao, R.S. Hegde, Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell. Dev. Biol. 27(1), 25–56 (2011). doi: 10.1146/annurev-cellbio-092910-154125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. K. Simons, E. Ikonen, Functional rafts in cell membranes. Nature 387, 569–572 (1997). doi: 10.1038/42408

    Article  CAS  PubMed  Google Scholar 

  30. S.J. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell membranes. Science 175(4023), 720–731 (1972). doi: 10.1126/science.175.4023.720

    Article  CAS  PubMed  Google Scholar 

  31. B.-L. Song, N. Sever, R.A. DeBose-Boyd, Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Molecular Cell 19(6), 829–840 (2005). doi: 10.1016/j.molcel.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  32. S.R. Spindler, R. Li, J.M. Dhahbi, A. Yamakawa, P. Mote, R. Bodmer, K. Ocorr, R.T. Williams, Y. Wang, K.P. Ablao, Statin treatment increases lifespan and improves cardiac health in Drosophila by decreasing specific protein prenylation. PLoS ONE 7(6), e39581 (2012). doi: 10.1371/journal.pone.0039581

    Google Scholar 

  33. R. Strasser, Biological significance of complex n-glycans in plants and their impact on plant physiology. Frontiers Plant Sci. 5(363), (2014). doi: 10.3389/fpls.2014.00363

    Google Scholar 

  34. L. Tagliavacca, T. Anelli, C. Fagioli, A. Mezghrani, E. Ruffato, R. Sitia, The making of a professional secretory cell: Architectural and functional changes in ER during B lymphocyte plasma cell differentiation. Biol. Chem. 384, 1273–1277 (2003). doi: 10.1515/BC.2003.141

    Article  CAS  PubMed  Google Scholar 

  35. B.P. Tu, J.S. Weissman, Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164(3), 341–346 (2004). doi: 10.1083/jcb.200311055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. S. Wakabayashi, H. Yoshida, The essential biology of the endoplasmic reticulum stress response for structural and computational biologists. Comput. Struct. Biotechnol. J. 6, e201303010 (2013). doi: 10.5936/csbj.201303010

    Article  PubMed Central  PubMed  Google Scholar 

  37. R. Zimmermann, S. Eyrisch, M. Ahmad, V. Helms, Protein translocation across the ER membrane. Biochim. Biophys. Acta 1808(3), 912–924 (2011). doi: 10.1016/j.bbamem.2010.06.015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buxbaum, E. (2015). Protein Transport Across Membranes. In: Fundamentals of Protein Structure and Function. Springer, Cham. https://doi.org/10.1007/978-3-319-19920-7_16

Download citation

Publish with us

Policies and ethics