Motor Proteins and Movement

  • Engelbert Buxbaum

Abstract

The cell skeleton forms a scaffold, along which motor proteins can move. These proteins convert the chemical energy of ATP-hydrolysis into mechanical energy. Movement is unidirectional, either from minus to plus or vice versa. The most important systems are microfilament /myosin and microtubule /kinesin and -dynamin .

Keywords

Motor Protein Diastolic Heart Failure Regulatory Light Chain Contractile Ring Intermediate Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.W. Baas, F.J. Ahmad, Beyond taxol: Microtubule-based treatment of disease and injury of the nervous system. Brain 136(10), 2937–2951 (2013). doi: 10.1093/brain/awt153
  2. 2.
    C.J. Brokaw, R. Kamiya, Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil. Cytoskeleton 8(1), 68–75 (1987). doi: 10.1002/cm.970080110
  3. 3.
    C. Cho, R.D. Vale, The mechanism of dynein motility: Insight from crystal structures of the motor domain. Biochim. Biophys. Acta 1823(1), 182–191 (2012). doi: 10.1016/j.bbamcr.2011.10.009 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    J.G. DeLuca, A. Musacchio, Structural organization of the kinetochore-microtubule interface. Cur. Opin. Cell Biol. 24(1), 48–56 (2012). doi: 10.1016/j.ceb.2011.11.003 CrossRefGoogle Scholar
  5. 5.
    S.K. Dutcher, The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii. Cytoskeleton 71(2), 79–94 (2014). doi: 10.1002/cm.21157
  6. 6.
    A.M. Fry, M.J. Leapera, R. Baylissa, The primary cilium: Guardian of organ development and homeostasis. Organogenesis 10(1), 62–68 (2014). doi: 10.4161/org.28910 CrossRefPubMedGoogle Scholar
  7. 7.
    M. Krüger, S. Kötter, Titin – sensibler Riese der Muskelzellen. BioSpektrum 19(4), 360–362 (2013). doi: 10.1007/s12268-013-0319-8 CrossRefGoogle Scholar
  8. 8.
    F.J. Kull, S.A. Endow, Force generation by kinesin and myosin cytoskeletal motor proteins. J. Cell Sci. 126(1), 9–19 (2013). doi: 10.1242/jcs.103911 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    P.A. Lefebvre, S.A. Nordstrom, J.E. Moulder, J.L. Rosenbaum, Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis. J. Cell Biol. 78(1), 8–27 (1978). doi: 10.1083/jcb.78.1.8
  10. 10.
    J. Malickia, T. Avidor-Reissb, From the cytoplasm into the cilium: Bon voyage. Organogenesis 10(1), 138–157 (2014). doi: 10.4161/org.29055 CrossRefGoogle Scholar
  11. 11.
    K.C. Rank, I. Rayment, Functional asymmetry in kinesin and dynein dimers. Biol. Cell 105(1), 1–13 (2013). doi: 10.1111/boc.201200044 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    A.J. Roberts, T. Kon, P.J. Knight, K. Sutoh, S.A. Burgess, Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell. Biol. 14(11), 713–726 (2013). doi: 10.1038/nrm3667 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    G. Sauer, R. Körner, A. Hanisch, A. Ries, E.A. Nigg, H.H.W. Silljé, Proteome analysis of the human mitotic spindle. Mol. Cell. Proteomic. 4(1), 35–43 (2005). doi: 10.1074/mcp.M400158-MCP200 CrossRefGoogle Scholar
  14. 14.
    T.J.P. van Dam, G. Wheway, G.G. Slaats, M.A. Huynen, R.H. Giles, The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium. Cilia 2(7), (2013). doi: 10.1186/2046-2530-2-7
  15. 15.
    J.E. Walker, M. Saraste, M.J. Runswick, N.J. Gay, Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1(8), 945–951 (1982). URL http://europepmc.org/articles/PMC553140
  16. 16.
    A.M. Waters, P.L. Beales, Ciliopathies: an expanding disease spectrum. Pediatr. Nephrol. 26(7), 1039–1056 (2011). doi: 10.1007/s00467-010-1731-7 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    G.B. Witman, The site of in vivo assembly of flagellar microtubules. Ann. N.Y. Acad. Sci. 253(1), 178–191 (1975). doi: 10.1111/j.1749-6632.1975.tb19199.x

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Engelbert Buxbaum
    • 1
  1. 1.KevelaerGermany

Personalised recommendations