Advertisement

Abstract

Our bodies have efficient defence systems against invading pathogens and against cancer cells. We distinguish cellular from humoral and innate from acquired systems. Humoral defences consist of antibacterial polypeptides, Pathogen-associated molecular pattern (PAMP)-receptors, complement systems, and antibodies. Antibacterial polypeptides include enzymes such as lysozyme and phospholipase A which digest bacterial cell walls and membranes, and the pore-forming defensins. PAMP-receptors recognise molecules found on certain groups of pathogens such as lipopolysaccharide in Gram-negative bacteria, lipoteichoic acid in Gram-positive bacteria or mannose-ending glycoproteins in yeasts. They opsonise pathogens for the complement system. The complement system is a cascade of proteolytic enzymes that produce anaphylactic peptides and membrane pores that lyse cells marked as foreign either by PAMP-receptors or by antibodies. Antibodies are proteins that specifically recognise foreign material and opsonise it for the complement system and for the cellular immune system. They are produced from a limited number of building blocks that are randomly recombined and subjected to hypermutation. Thus an almost infinite variety of antibodies can be produced from a limited number of genes. Acquiring specific antibodies requires about two weeks, during this time the body has to rely on innate immunity. Once an antibody response has been mounted, the immune system remembers that pathogen for the rest of our life. Artificial exposure to antigens from important pathogens (immunisation) can protect us from infections and is, after sanitation, mankind’s second most effective weapon against infectious diseases.

Keywords

Human Immunodeficiency Virus Complement System Lectin Pathway Membrane Cofactor Protein Peptide Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Atanasova, A. Whitty, Understanding cytokine and growth factor receptor activation mechanisms. Crit. Rev. Biochem. Mol. Biol. 47(6), 502–530 (2012).  doi:10.3109/10409238.2012.729561 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    F. Barré-Sinoussi, J.C. Chermann, F. Rey, M.T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler-Blin, F. Vézinet-Brun, C. Rouzioux, W. Rozenbaum, L. Montagnier, Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220(4599), 868–871 (1983).  doi:10.1126/science.6189183 CrossRefPubMedGoogle Scholar
  3. 3.
    E. von Behring, S. Kitasato, Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch. Med. Wochenschr. 16, 1145–1148 (1890). URL http://archiv.ub.uni-marburg.de/eb/2013/0164/view.html
  4. 4.
    K. Borch-Johnsen, T. Mandrup-Poulsen, B. Zachau-Christiansen, G. Joner, M. Christy, K. Kastrup, J. Nerup, Relation between breast-feeding and incidence rates of insulin- dependent diabetes mellitus. Lancet 324(8411), 1083–1086 (1984). doi:10.1016/S0140-6736(84) 91517-4 CrossRefGoogle Scholar
  5. 5.
    J. Bordet, Sur le mode d’action des sérums préventifs. Ann. Inst. Pasteur 10, 193–219 (1896). URL https://archive.org/stream/cbarchive_48033_surlemodedactiondesserumspreve1887/surlemodedactiondesserumspreve1887_djvu.txt
  6. 6.
    C. Brack, M. Hirama, R. Lenhard-Schuller, S. Tonegawa, A complete immunoglobulin gene is created by somatic recombination. Cell 15(1), 1–14 (1978).  doi:10.1016/0092-8674(78)90078-8 CrossRefPubMedGoogle Scholar
  7. 7.
    M. Brines, A. Cerami, The receptor that tames the innate immune response. Mol. Med. 18, 486–496 (2012).  doi:10.2119/molmed.2011.0041 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Sir MacFarlane Burnet, The Clonal Selection Theory of Acquired Immunity: The Abraham Flexner lectures of Vanderbilt University, 1958 (Vanderbilt University Press, 1959) URL https://www.archive.org/stream/clonalselectiont00burn/clonalselectiont00burn_djvu.txt
  9. 9.
    E. Buxbaum, Biophysical Chemistry of Proteins: An Introduction to Laboratory Methods (Springer, New York, 2011). ISBN 978-1-4419-7250-7CrossRefGoogle Scholar
  10. 10.
    J.D. Chalmers, B.J. McHugh, C. Doherty, M.P. Smith, J.R. Govan, D.C.Kilpatrick, A.T. Hill, Mannose-binding lectin deficiency and disease severity in non-cystic fibrosis bronchiectasis: A prospective study. Lancet Resp. Med. 1(3), 224–232 (2013).  doi:10.1016/S2213-2600(13)70001-8
  11. 11.
    N.E.C. Clough, P.J. Hauer, Using polyclonal and monoclonal antibodies in regulatory testing of biological products. ILAR J. 46(3), 300–306 (2005).  doi:10.1093/ilar.46.3.300 CrossRefGoogle Scholar
  12. 12.
    D. Cosman, The hematopoietin receptor superfamily. Cytokine 5(2), 95–106 (1993). doi:http://dx.doi.org/10.1016/1043-4666(93)90047-9
  13. 13.
    Creighton, T.E. The physical and chemical basis of molecular biology. Helvetica Press (2010)Google Scholar
  14. 14.
    P. Ehrlich, Experimentelle Untersuchungen über Immunität. I. Ueber Ricin. Dtsch. Med. Wochenschr. 17(32), 976–979 (1891a). URL http://www.pei.de/SharedDocs/Downloads/institut/veroeffentlichungen-von-paul-ehrlich/1886-1896/1891-experimentelle-untersuchungen-immunitaet-ricin.pdf
  15. 15.
    P. Ehrlich, Experimentelle Untersuchungen über Immunität. II. Ueber Abrin. Dtsch. Med. Wochenschr. 17, 1218–1219 (1891b). URL http://www.pei.de/SharedDocs/Downloads/institut/veroeffentlichungen-von-paul-ehrlich/1886-1896/1891-experimentelle-untersuchungen-immunitaet-abrin.pdf
  16. 16.
    R.B. Elliott, C.C. Pilcher, D.M. Fergusson, A.W. Stewart, A population based strategy to prevent insulin-dependent diabetes using nicotinamide. J. Pediatric Endocrinol. Metabol. 9(5), 501–509 (1996).  doi:10.1515/JPEM.1996.9.5.501 CrossRefGoogle Scholar
  17. 17.
    E. Engvall, P. Perlman, Enzyme-linked immunosorbent assay of immunoglobulin G. Immunochemistry 8, 871–874 (1971).  doi:10.1016/0019-2791(71)90454-X CrossRefPubMedGoogle Scholar
  18. 18.
    A. Fagreaus, Antibody production in relation to development of plasma cells. Acta Med. Scand. 130(suppl. 204), 3–122 (1948)Google Scholar
  19. 19.
    D. Fera, A.G. Schmidt, B.F. Haynes, F. Gao, H.-X. Liao, T.B. Kepler, S.C. Harrison, Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. Proc. Natl. Acad. Sci. USA 111(28), 10275–10280 (2014).  doi:10.1073/pnas.1409954111 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    E.G. Findlay, S.M. Currie, D.J. Davidson, Cationic host defence peptides: Potential as antiviral therapeutics. BioDrugs 27, 479–493 (2013).  doi:10.1007/s40259-013-0039-0 CrossRefGoogle Scholar
  21. 21.
    P.D. Frederiksen, S. Thiel, C.B. Larsen, J.C. Jensenius, M-ficolin, an innate immune defence molecule, binds patterns of acetyl groups and activates complement. Scand. J. Immunol. 62(5), 462–473 (2005).  doi:10.1111/j.1365-3083.2005.01685.x CrossRefPubMedGoogle Scholar
  22. 22.
    P.A. Gorer, S. Lyman, G.D. Snell, Studies on the genetic and antigenic basis of tumour transplantation. linkage between a histocompatibility gene and ‘fused’ in mice. Proc. Roy. Soc. Lond. B 135(881), 499–505 (1948). URL http://rspb.royalsocietypublishing.org/content/135/881/499.full.pdf+html
  23. 23.
    V.H. Haase, Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 27(1), 41–43 (2013).  doi:10.1016/j.blre.2012.12.003 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    J. Heine, Beobachtungen über Lähmungszustände der unteren Extremitäten und deren Behandlung (Köhler, Stuttgart, 1840)Google Scholar
  25. 25.
    F.G.J. Henle, Pathologische Untersuchungen von den Miasmen und Kontagien und von den miasmatisch-kontagiösen Krankheiten (Berlin, 1840)Google Scholar
  26. 26.
    C. Honoré, T. Hummelshoj, B.E. Hansen, H.O. Madsen, P. Eggleton, P. Garred, The innate immune component ficolin 3 (Hakata antigen) mediates the clearance of late apoptotic cells. Arthritis Rheum. 56(5), 1598–1607 (2007).  doi:10.1002/art.22564 CrossRefPubMedGoogle Scholar
  27. 27.
    N. Hozumi, S. Tonegawa, Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl. Acad. Sci. USA 73(10), 3628–3632 (1976). URL http://www.pnas.org/content/73/10/3628.full.pdf
  28. 28.
    S. Inouye, A. Hasegawa, S. Matsuno, S. Katow, Changes in antibody avidity after virus infections: Detection by an immunosorbent assay in which a mild protein-denaturing agent is employed. J. Clin. Microbiol. 20(3), 525–529 (1984). URL http://jcm.asm.org/content/20/3/525.full.pdf+html
  29. 29.
    C.A. Janeway, Jr., R. Medzhitov, Innate immune recognition. Ann. Rev. Immunol. 20, 197–216 (2002).  doi:10.1146/annurev.immunol.20.083001.084359 CrossRefGoogle Scholar
  30. 30.
    E. Jenner, An Inquirey into the Causes and Effects of the Variolæ Vaccinæ, a Disease Discovered in some of the Western Countries of England, Particularly Glaucestershire, and known by the name of the Cow Pox (Published by the author, London, 1798)Google Scholar
  31. 31.
    N.K. Jerne, The natural-selection theory of antibody formation. Proc. Natl. Acad. Sci. USA 41(11), 849–857 (1955). URL http://www.pnas.org/content/41/11/849.full.pdf+html?sid=56d3763c-5641-46ab-9ab4-a0e2af2ea44a
  32. 32.
    R. Koch, Die Ætiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte des Bacillus anthracis. Beiträge zur Biologie der Pflanzen 2(2), 277–311 (1876)Google Scholar
  33. 33.
    G. Köhler, C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517), 495–497 (1975).  doi:10.1038/256495a0 CrossRefPubMedGoogle Scholar
  34. 34.
    A. Krarup, S. Thiel, A. Hansen, T. Fujita, J.C. Jensenius, L-ficolin is a pattern recognition molecule specific for acetyl groups. J. Biol. Chem. 279(46), 47513–47519 (2004).  doi:10.1074/jbc.M407161200 CrossRefPubMedGoogle Scholar
  35. 35.
    N.J. Lynch, S. Roscher, T. Hartung, S. Morath, M. Matsushita, D.N. Maennel, M. Kuraya, T. Fujita, W.J. Schwaeble, L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of gram-positive bacteria, and activates the lectin pathway of complement. J. Immunol. 172(2), 1198–1202 (2004).  doi:10.4049/jimmunol.172.2.1198 CrossRefPubMedGoogle Scholar
  36. 36.
    D.D. McGregor, M.B. Gowans, The antibody response of rats depleted of lymphocytes by chronic drainage from the thoracic duct. J. Exp. Med. 117(2), 303–320 (1963). URL http://jem.rupress.org/content/117/2/303.full.pdf+html
  37. 37.
    P.B. Medawar, Immunological tolerance. Science 133(3449), 303–306 (1961). URL http://nfs.unipv.it/nfs/minf/dispense/immunology/lectures/files/references/medawar_1960.pdf
  38. 38.
    E. Metschnikoff, Untersuchung über die mesodermalen Phagocyten einiger Wirbeltiere. Biologisches Centralblatt 3(III), 560–565 (1883–1884). URL http://www.biodiversitylibrary.org/item/27783#page/572/mode/1up
  39. 39.
    J.F.A.P. Miller, Immunological function of the thymus. Lancet 278(7205), 748–749 (1961).  doi:10.1016/S0140-6736(61)90693-6 CrossRefGoogle Scholar
  40. 40.
    K. Murphy, Janeway’s Immunobiol., 8th edn. (Taylor & Francis, New York, NY, 2011). ISBN 978-0-8153-4243-4Google Scholar
  41. 41.
    H. Nomiyama, N. Osada, O. Yoshie, The evolution of mammalian chemokine genes. Cytokine Growth Factor Rev. 21(4), 253–262 (2010).  doi:10.1016/j.cytogfr.2010.03.004 CrossRefPubMedGoogle Scholar
  42. 42.
    M. Nonaka, A. Kimura, Genomic view of the evolution of the complement system. Immunogenetics 58(9), 701–713 (2006).  doi:10.1007/s00251-006-0142-1 PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    M. Noris, G. Remuzzi, Overview of complement activation and regulation. Sem. Nephrol. 33(6), 479–492 (2013).  doi:10.1016/j.semnephrol.2013.08.001 CrossRefGoogle Scholar
  44. 44.
    B.S. Park, J.-O. Lee, Recognition of lipopolysaccharide pattern by TLR4 complexes. Nature Exp. Mol. Med. 45, e66 (2013).  doi:10.1038/emm.2013.9 CrossRefGoogle Scholar
  45. 45.
    M. Pasteur, An address on vaccination in relation to chicken cholera and splenic fever. Br. Med. J. 2, 283–284 (1881). URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2264103/pdf/brmedj05026-0035.pdf
  46. 46.
    H.P. Pöhn, G. Rasch, Statistik meldepflichtiger, übertragbarer Krankheiten vom Beginn der Aufzeichnungen bis heute (Stand 31. Dezember 1989) (MMV Medizin Verlag, München, 1994). URL http://edoc.rki.de/documents/rki_ab/reYwfdwOXfVLs/PDF/220lwYF098W2I.pdf
  47. 47.
    M.F. Princiotta, D. Finzi, S.-B. Qian, J. Gibbs, S. Schuchmann, F. Buttgereit, J.R. Bennink, J.W. Yewdellemail, Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18, 343–354 (2003).  doi:10.1016/S1074-7613(03)00051-7 CrossRefPubMedGoogle Scholar
  48. 48.
    D.J. Roberts, A.G. Craig, A.R. Berendt, R. Pinches, G. Nash, K. Marsh, C.I. Newbold, Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357, 689–692 (1992).  doi:10.1038/357689a0 PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    R. Rokyta, J. Fricová, Ontogeny of the pain. Physiol Res. 61(Suppl. 1), S109–S122 (2012). URL http://www.biomed.cas.cz/physiolres/pdf/61%20Suppl%201/61_S109.pdf
  50. 50.
    G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J.B. Heymann, W.G. Müller, J.G. McNally, Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nature Meth. 7(12), 985–987 (2010).  doi:10.1038/nmeth.1533 CrossRefGoogle Scholar
  51. 51.
    N. Shehadeh, R. Shamir, M. Berant, A. Etzioni, Insulin in human milk and the prevention of type 1 diabetes. Pediatr. Diabetes 2(4), 175–177 (2001).  doi:10.1034/j.1399-5448.2001.20406.x CrossRefPubMedGoogle Scholar
  52. 52.
    B. Suligoi, C. Galli, M. Massi, F. Di Sora, M. Sciandra, P. Pezzotti, O. Recchia, F. Montella, A. Sinicco, G. Rezza, Precision and accuracy of a procedure for detecting recent human immunodeficiency virus infections by calculating the antibody avidity index by an automated immunoassay-based method. J. Clin. Microbiol. 40(11), 4015–4020 (2002).  doi:10.1128/JCM.40.11.4015-4020.2002 PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Y. Tang, J. Lou, R.K. Alpaugh, M.K. Robinson, J.D. Marks, L.M. Weiner, Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen. J. Immunol. 179, 2815–2823 (2007).  doi:10.4049/jimmunol.179.5.2815 CrossRefPubMedGoogle Scholar
  54. 54.
    M. Tsujimura, T. Miyazaki, E. Kojima, Y. Sagara, H. Shiraki, K. Okochi, Y. Maeda, Serum concentration of Hakata antigen, a member of the ficolins, is linked with inhibition of Aerococcus viridans growth. Clin. Chim. Acta 325(1–2), 139–146 (2002).  doi:10.1016/S0009-8981(02)00274-7 CrossRefPubMedGoogle Scholar
  55. 55.
    A. Wassermann, A. Neisser, C. Bruck, Eine serodiagnostische Reaktion bei Syphilis. Dtsche Med. Wochenschr. 32(19), 745–746 (1906).  doi:10.1055/s-0028-1142018 CrossRefGoogle Scholar
  56. 56.
    P. Wentworth, Jr. et al., Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 298, 2195–2199 (2002).  doi:10.1126/science.1077642 CrossRefPubMedGoogle Scholar
  57. 57.
    C.S. Zipitis, A.K. Akobeng, Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch. Dis. Childhood 93(6), 512–517 (2008).  doi:10.1136/adc.2007.128579 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Engelbert Buxbaum
    • 1
  1. 1.KevelaerGermany

Personalised recommendations