Skip to main content

Modeling suspension bridges through the von Kármán quasilinear plate equations

  • Chapter
Contributions to Nonlinear Elliptic Equations and Systems

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 86))

Abstract

A rectangular plate modeling the deck of a suspension bridge is considered. The plate may widely oscillate, which suggests to consider models from nonlinear elasticity. The von Kármán plate model is studied, complemented with the action of the hangers and with suitable boundary conditions describing the behavior of the deck. The oscillating modes are determined in full detail. Existence and multiplicity of static equilibria are then obtained under different assumptions on the strength of the buckling load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Gwaiz, M., Benci, V., Gazzola, F.: Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal. Theory Methods Appl. 106, 18–34 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ammann, O.H., von Kármán, T., Woodruff, G.B.: The failure of the Tacoma Narrows Bridge. Federal Works Agency, Washington (1941)

    Google Scholar 

  3. Arioli, G., Gazzola, F.: A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge collapse. Appl. Math. Model. 39, 901–912 (2015)

    Article  MathSciNet  Google Scholar 

  4. Augusti, G., Sepe, V.: A “deformable section” model for the dynamics of suspension bridges. Part I: Model and linear response. Wind Struct. 4, 1–18 (2001)

    Google Scholar 

  5. Augusti, G., Diaferio, M., Sepe, V.: A “deformable section” model for the dynamics of suspension bridges. Part II: Nonlinear analysis and large amplitude oscillations. Wind Struct. 6, 451–470 (2003)

    Google Scholar 

  6. Bartoli, G., Spinelli, P.: The stochastic differential calculus for the determination of structural response under wind. J. Wind Eng. Ind. Aerodyn. 48, 175–188 (1993)

    Article  Google Scholar 

  7. Berchio, E., Gazzola, F.: A qualitative explanation of the origin of torsional instability in suspension bridges. Nonlinear Anal. Theory Methods Appl. 121, 54–72 (2015)

    Article  MathSciNet  Google Scholar 

  8. Berger, H.M.: A new approach to the analysis of large deflections of plates. J. Appl. Mech. 22, 465–472 (1955)

    MATH  MathSciNet  Google Scholar 

  9. Berger, M.S.: On von Kármán’s equations and the buckling of a thin elastic plate, I. The clamped plate. Commun. Pure Appl. Math. 20, 687–719 (1967)

    Article  MATH  Google Scholar 

  10. Berger, M.S., Fife, P.C.: Von Kármán’s equations and the buckling of a thin elastic plate. Bull. Am. Math. Soc. 72, 1006–1011 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berger, M.S., Fife, P.C.: Von Kármán’s equations and the buckling of a thin elastic plate, II. Plate with general edge conditions. Commun. Pure Appl. Math. 21, 227–241 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bochicchio, I., Giorgi, C., Vuk, E.: Long-term dynamics of the coupled suspension bridge system. Math. Models Methods Appl. Sci. 22, 22 pp. (2012)

    Google Scholar 

  13. Brownjohn, J.M.W.: Observations on non-linear dynamic characteristics of suspension bridges. Earthq. Eng. Struct. Dyn. 23, 1351–1367 (1994)

    Article  Google Scholar 

  14. Chang, K.C.: Methods in Nonlinear Analysis. Springer Monographs in Mathematics. Springer, Berlin (2005)

    MATH  Google Scholar 

  15. Ciarlet, P.G., A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73, 349–389 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ciarlet, P.G., Rabier, P.: Les équations de von Kármán. Studies in Mathematics and its Applications, vol. 27. Springer, Berlin (1980)

    Google Scholar 

  17. Davet, J.L.: Justification de modèles de plaques nonlinéaires pour des lois de comportment générales. Modélisation Math. Anal. Numér. 20, 147–192 (1986)

    MathSciNet  Google Scholar 

  18. de Figueiredo, D.G.: Semilinear elliptic systems. In: Nonlinear Functional Analysis and Applications to Differential Equations (Trieste, 1997), pp. 122–152. World Scientific, River Edge (1998)

    Google Scholar 

  19. Ferrero, A., Gazzola, F.: A partially hinged rectangular plate as a model for suspension bridges. Discrete. Cont. Dynam. Syst. A. 35, 5879–5908 (2015)

    Article  MathSciNet  Google Scholar 

  20. Gazzola, F.: Nonlinearity in oscillating bridges. Electron. J. Differ. Equ. 211, 1–47 (2013)

    MathSciNet  Google Scholar 

  21. Gazzola, F., Grunau, H.-Ch., Sweers, G.: Polyharmonic Boundary Value Problems. Lecture Notes in Mathematics, vol. 1991. Springer, Heidelberg (2010)

    Google Scholar 

  22. Kirchhoff, G.R.: Über das gleichgewicht und die bewegung einer elastischen scheibe. J. Reine Angew. Math. 40, 51–88 (1850)

    Article  MATH  MathSciNet  Google Scholar 

  23. Knightly, G.H.: An existence theorem for the von Kármán equations. Arch. Ration. Mech. Anal. 27, 233–242 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  24. Knightly, G.H., Sather, D.: On nonuniqueness of solutions of the von Kármán equations. Arch. Ration. Mech. Anal. 36, 65–78 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  25. Knightly, G.H., Sather, D.: Nonlinear buckled states of rectangular plates. Arch. Ration. Mech. Anal. 54, 356–372 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lacarbonara, W.: Nonlinear Structural Mechanics. Springer, New York (2013)

    Book  MATH  Google Scholar 

  27. Lagnese, J.E.: Boundary Stabilization of Thin Plates. SIAM Studies in Applied Mathematics, Philadelphia (1989)

    Book  MATH  Google Scholar 

  28. Lagnese, J.E., Lions, J.L.: Modelling Analysis and Control of Thin Plates. Masson - Collection RMA, Paris (1988)

    MATH  Google Scholar 

  29. Levy, S.: Bending of rectangular plates with large deflections. National Advisory Committee for Aeronautics, Washington, Report n.737, 139–157 (1942)

    Google Scholar 

  30. Levy, S., Goldenberg, D., Zibritosky, G.: Simply supported long rectangular plate under combined axial load and normal pressure. National Advisory Committee for Aeronautics, Washington, Technical Note 949, 24 pp. (1944)

    Google Scholar 

  31. McKenna, P.J., Walter, W.: Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 98, 167–177 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Menn, C.: Prestressed Concrete Bridges. Birkhäuser, Boston (1990)

    Book  Google Scholar 

  33. Plaut, R.H., Davis, F.M.: Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges. J. Sound Vib. 307, 894–905 (2007)

    Article  Google Scholar 

  34. Pugsley, A.: The Theory of Suspension Bridges. Edward Arnold, London (1968)

    Google Scholar 

  35. Robinson, A.R., West, H.H.: A Re-examination of the Theory of Suspension Bridges. Civil Engineering Series, Structural Research Series, vol. 322. Doctoral Dissertation, Urbana (1967)

    Google Scholar 

  36. Scanlan, R.H.: Developments in low-speed aeroelasticity in the civil engineering field. AIAA J. 20, 839–844 (1982)

    Article  MATH  Google Scholar 

  37. Scanlan, R.H., Tomko, J.J.: Airfoil and bridge deck flutter derivatives. J. Eng. Mech. 97, 1717–1737 (1971)

    Google Scholar 

  38. Scott, R.: In the Wake of Tacoma. Suspension Bridges and the Quest for Aerodynamic Stability. ASCE, Reston (2001)

    Book  Google Scholar 

  39. Tacoma Narrows Bridge Collapse: http://www.youtube.com/watch?v=3mclp9QmCGs (1940)

  40. Truesdell, C.: Some challenges offered to analysis by rational thermomechanics. In: de la Penha, G.M., Medeiros, L.A. (eds.) Contemporary Developments in Continuum Mechanics and Partial Differential Equations, pp. 495–603. North-Holland, Amsterdam (1978)

    Google Scholar 

  41. Ventsel, E., Krauthammer, T.: Thin Plates and Shells: Theory, Analysis, and Applications. Marcel Dekker, New York (2001)

    Book  Google Scholar 

  42. Villaggio, P.: Mathematical Models for Elastic Structures. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  43. von Kármán, T.: Festigkeitsprobleme im maschinenbau. Encycl. der Mathematischen Wissenschaften, vol. IV/4 C, pp. 348–352. Leipzig (1910)

    Google Scholar 

  44. Wang, Y.: Finite time blow-up and global solutions for fourth order damped wave equations. J. Math. Anal. Appl. 418, 713–733 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  45. Wang, Y.: A new mathematical model for suspension bridges with energy dependent boundary conditions, preprint (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Gazzola .

Editor information

Editors and Affiliations

Additional information

Dedicated to Djairo Guedes de Figueiredo, on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gazzola, F., Wang, Y. (2015). Modeling suspension bridges through the von Kármán quasilinear plate equations. In: Nolasco de Carvalho, A., Ruf, B., Moreira dos Santos, E., Gossez, JP., Monari Soares, S., Cazenave, T. (eds) Contributions to Nonlinear Elliptic Equations and Systems. Progress in Nonlinear Differential Equations and Their Applications, vol 86. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-19902-3_18

Download citation

Publish with us

Policies and ethics