Advertisement

Literature Review

  • Shane (S.Q.) XieEmail author
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 108)

Abstract

A comprehensive literature review on rehabilitation robots is carried out to identify the key issues. The main design requirements and development complications are identified and the various approaches used in past robots are reviewed. It begins with a survey of existing human rehabilitation devices designed for use in human assistance and treatment. An overview of the kinematic and computational biomechanical models of the human limb is also provided. This is followed by a review of the state of the art of interaction control strategies, with primary focus on its application in rehabilitation robots. Finally, the reviewed materials are assimilated in a discussion that highlights issues in rehabilitation robots that require further development, and are hence the subject of investigation for this research.

Keywords

Reference Trajectory Rehabilitation Robot Singular Configuration Gait Rehabilitation Pneumatic Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Hogan, H.I. Krebs, J. Charnnarong, P. Srikrishna, A. Sharon, MIT-MANUS: a workstation for manual therapy and training. I, in IEEE International Workshop on Robot and Human Communication, 1992, pp. 161–165Google Scholar
  2. 2.
    H.I. Krebs, J.J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B.T. Volpe, N. Hogan, Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton. Robot. 15, 7–20 (2003)CrossRefGoogle Scholar
  3. 3.
    C.G. Burgar, P.S. Lum, P.C. Shor, H.F.M. Van Der Loos, Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 37, 663–673 (2000)Google Scholar
  4. 4.
    R. Loureiro, F. Amirabdollahian, M. Topping, B. Driessen, W. Harwin, Upper limb robot mediated stroke therapy—GENTLE/s approach. Auton. Robot. 15, 35–51 (2003)CrossRefGoogle Scholar
  5. 5.
    P.S. Lum, C.G. Burgar, M. Van Der Loos, P.C. Shor, M. Majmundar, R. Yap, MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J. Rehabil. Res. Dev. 43, 631–642 (2006)CrossRefGoogle Scholar
  6. 6.
    H.I. Krebs, N. Hogan, B.T. Volpe, M.L. Aisen, L. Edelstein, C. Diels, Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility. Technol. Health Care 7, 419–423 (1999)Google Scholar
  7. 7.
    P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar, M. Van der Loos, Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83, 952–959 (2002)CrossRefGoogle Scholar
  8. 8.
    P.S. Lum, C.G. Burgar, P.C. Shor, Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 186–194 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Coote, B. Murphy, W. Harwin, E. Stokes, The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin. Rehabil. 22, 395–405 (2008)CrossRefGoogle Scholar
  10. 10.
    A. Frisoli, L. Borelli, A. Montagner, S. Marcheschi, C. Procopio, F. Salsedo, M. Bergamasco, M.C. Carboncini, M. Tolaini, B. Rossi, Arm rehabilitation with a robotic exoskeleleton in Virtual Reality, in International Conference on Rehabilitation Robotics, 2007, pp. 631–642Google Scholar
  11. 11.
    T. Nef, M. Guidali, R. Riener, ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bion. Biomech. 6, 127–142 (2009)CrossRefGoogle Scholar
  12. 12.
    C. Carignan, J. Tang, S. Roderick, Development of an exoskeleton haptic interface for virtual task training, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 3697–3702Google Scholar
  13. 13.
    Y. Ren, H. S. Park, L.Q. Zhang, Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation, in IEEE International Conference on Rehabilitation Robotics, 2009, pp. 761–765Google Scholar
  14. 14.
    S.J. Ball, I.E. Brown, S.H. Scott, MEDARM: A rehabilitation robot with 5DOF at the shoulder complex, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2007Google Scholar
  15. 15.
    R.A.R.C. Gopura, K. Kiguchi, Y. Yi, SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, pp. 1126–1131Google Scholar
  16. 16.
    A.H.A. Stienen, E.E.G. Hekman, F.C.T. van der Helm, H. van der Kooij, Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Rob. 25, 628–633 (2009)CrossRefGoogle Scholar
  17. 17.
    Armeo Therapy Concept. Available: http://www.hocoma.com/products/armeo/
  18. 18.
  19. 19.
  20. 20.
    Interactive Motion Technologies. Available: http://interactive-motion.com/
  21. 21.
    Biodex. Available: http://www.biodex.com/
  22. 22.
  23. 23.
  24. 24.
    J.C. Perry, J. Rosen, S. Burns, Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12, 408–417 (2007)CrossRefGoogle Scholar
  25. 25.
    P. Garrec, J.P. Friconneau, Y. Méasson, Y. Perrot, ABLE, an innovative transparent exoskeleton for the upper-limb, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 1483–1488Google Scholar
  26. 26.
    D.G. Caldwell, N.G. Tsagarakis, S. Kousidou, N. Costa, I. Sarakoglou, “Soft” exoskeletons for upper and lower body rehabilitation—design, control and testing. Int. J. Humanoid Rob. 4, 549–573 (2007)CrossRefGoogle Scholar
  27. 27.
    S. Kousidou, N. Tsagarakis, D.G. Caldwell, C. Smith, Assistive exoskeleton for task based physiotherapy in 3-dimensional space, in 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006, pp. 266–271Google Scholar
  28. 28.
    S. Balasubramanian, H.R. Wei, M. Perez, B. Shepard, E. Koeneman, J. Koeneman, J. He, Rupert: an exoskeleton robot for assisting rehabilitation of arm functions, in 2008 Virtual Rehabilitation, IWVR,, 2008, pp. 163–167Google Scholar
  29. 29.
    A. Roy, H.I. Krebs, S.L. Patterson, T.N. Judkins, I.K. Larry, R.M. Macko, N. Hogan, Measurement of human ankle stiffness using the anklebot, in International Conference on Rehabilitation Robotics, 2007, pp. 356–363Google Scholar
  30. 30.
    K. Bharadwaj, T.G. Sugar, J.B. Koeneman, E.J. Koeneman, Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation. J. Biomech. Eng. 127, 1009–1013 (2005)CrossRefGoogle Scholar
  31. 31.
    D.P. Ferris, J.M. Czerniecki, B. Hannaford, An ankle-foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 21, 189–197 (2005)CrossRefGoogle Scholar
  32. 32.
    J.A. Saglia, N.G. Tsagarakis, J.S. Dai, D. G. Caldwell, Control strategies for ankle rehabilitation using a high performance ankle exerciser, in IEEE International Conference on Robotics and Automation, 2010, pp. 2221–2227Google Scholar
  33. 33.
    J. Yoon, J. Ryu, A novel reconfigurable ankle/foot rehabilitation robot, in IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005, pp. 2290–2295Google Scholar
  34. 34.
    Human-Machine Interface Laboratory, Rutgers University. http://www.caip.rutgers.edu/vrlab/projects/ankle/ankle.html
  35. 35.
    J.A. Blaya, H. Herr, Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 24–31 (2004)CrossRefGoogle Scholar
  36. 36.
    G.S. Sawicki, D.P. Ferris, A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J. NeuroEng. Rehabil. 6(23) 2009Google Scholar
  37. 37.
    G.S. Sawicki, K.E. Gordon, D.P. Ferris, Powered lower limb orthoses: applications in motor adaptation and rehabilitation, in 2005 IEEE International Conference on Rehabilitation Robotics, 2005, pp. 206–211Google Scholar
  38. 38.
    A.W. Boehler, K.W. Hollander, T.G. Sugar, D. Shin, Design, implementation and test results of a robust control method for a powered ankle foot orthosis (AFO), in IEEE International Conference on Robotics and Automation, 2008, pp. 2025–2030Google Scholar
  39. 39.
    A. Agrawal, S.K. Banala, S.K. Agrawal, S.A. Binder-Macleod, Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation, in IEEE International Conference on Rehabilitation Robotics, 2005, pp. 41–44Google Scholar
  40. 40.
    J.W. Wheeler, H.I. Krebs, N. Hogan, An ankle robot for a modular gait rehabilitation system, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, pp. 1681–1684Google Scholar
  41. 41.
    G. Liu, J. Gao, H. Yue, X. Zhang, G. Lu, Design and kinematics simulation of parallel robots for ankle rehabilitation, in IEEE International Conference on Mechatronics and Automation, Luoyang, China, 2006, pp. 1109–1113Google Scholar
  42. 42.
    C.E. Syrseloudis, I.Z. Emiris, A parallel robot for ankle rehabilitation-evaluation and its design specifications, in IEEE International Conference on BioInformatics and BioEngineering, 2008Google Scholar
  43. 43.
    M. Girone, G. Burdea, M. Bouzit, V. Popescu, J.E. Deutsch, Stewart platform-based system for ankle telerehabilitation. Auton. Robot. 10, 203–212 (2001)CrossRefzbMATHGoogle Scholar
  44. 44.
    J.S. Dai, T. Zhao, Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device. Auton. Robot. 16, 207–218 (2004)CrossRefGoogle Scholar
  45. 45.
    C.-C.K. Lin, M.-S. Ju, S.-M. Chen, B.-W. Pan, A specialized robot for ankle rehabilitation and evaluation. J. Med. Biol. Eng. 28, 79–86 (2008)Google Scholar
  46. 46.
    J.G. Sun, J.Y. Gao, J.H. Zhang, R.H. Tan, Teaching and playback control system for parallel robot for ankle joint rehabilitation, in IEEE International Conference on Industrial Engineering and Engineering Management, 2007, pp. 871–875Google Scholar
  47. 47.
    J. Yoon, J. Ryu, K.-B. Lim, Reconfigurable ankle rehabilitation robot for various exercises. J. Robot. Syst. 22, S15–S33 (2006)CrossRefGoogle Scholar
  48. 48.
    J.A. Saglia, N.G. Tsagarakis, J.S. Dai, D.G. Caldwell, A high-performance redundantly actuated mechanism for ankle rehabilitation. Int. J. Robot. Res. 28, 1216–1227 (2009)CrossRefGoogle Scholar
  49. 49.
    W.C. Shiel, Temporomandibular joint disorder (tmj). Retrieved 10 Jan 2010 from http://www.medicinenet.com/temporomandibular_joint_disorder/article.htm
  50. 50.
    W.C. Shiel, Temporomandibular joint (tmj) syndrome. Retrieved 10 Jan 2010 from http://www.emedicinehealth.com/temporomandibular_joint_tmj_syndrome/article_em.htm
  51. 51.
    D.M. Laskin, Temporomandibular Joint Disorders (SigmaMax Publishing, 2001), Chap. 79Google Scholar
  52. 52.
    NHS Choices, Muscular dystrophy. Retrieved 10 Jan 2010 from http://www.nhs.uk/Conditions/Muscular-dystrophy/Pages/Introduction.aspx
  53. 53.
    D.C. Dugdale, Muscle atrophy. Retrieved 10 Jan 2010 from http://www.umm.edu/ency/article/003188.htm
  54. 54.
    B. Tondu, Estimating shoulder-complex mobility. Appl. Bion. Biomech. 4, 19–29 (2007)CrossRefGoogle Scholar
  55. 55.
    J. Yang, K. Abdel-Malek, K. Nebel, Reach envelope of a 9-degree-of-freedom model of the upper extremity. Int. J. Robot. Autom. 20, 240–259 (2005)Google Scholar
  56. 56.
    P.M. Ludewig, V. Phadke, J.P. Braman, D.R. Hassett, C.J. Cieminski, R.F. Laprade, Motion of the shoulder complex during multiplanar humeral elevation. J. Bone Jt. Surg.—Series A 91, 378–389 (2009)CrossRefGoogle Scholar
  57. 57.
    T. Nef, M. Guidali, R. Riener, ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bion. Biomech. 6, 127–142 (2009)CrossRefGoogle Scholar
  58. 58.
    C.H. Barnett, J.R. Napier, The axis of rotation at the ankle joint in man; its influence upon the form of the talus and the mobility of the fibula. J. Anat. 86, 1–9 (1952)Google Scholar
  59. 59.
    A. Lundberg, O.K. Svensson, G. Nemeth, G. Selvik, The axis of rotation of the ankle joint. J. Bone Jt. Surg.—Series B 71, 94–99 (1989)Google Scholar
  60. 60.
    J.R. Engsberg, A biomechanical analysis of the talocalcaneal joint—in vitro. J. Biomech. 20, 429–442 (1987)CrossRefGoogle Scholar
  61. 61.
    D.M. Demarais, R.A. Bachschmidt, G.F. Harris, The instantaneous axis of rotation (IAOR) of the foot and ankle: a self-determining system with implications for rehabilitation medicine application. IEEE Trans. Neural Syst. Rehabil. Eng. 10, 232–238 (2002)CrossRefGoogle Scholar
  62. 62.
    N. Ying, W. Kim, Determining dual Euler angles of the ankle complex in vivo using “flock of birds” electromagnetic tracking device. J. Biomech. Eng. 127, 98–107 (2005)CrossRefGoogle Scholar
  63. 63.
    A. Leardini, J.J. O’Connor, F. Catani, S. Giannini, A geometric model of the human ankle joint. J. Biomech. 32, 585–591 (1999)CrossRefGoogle Scholar
  64. 64.
    J. Apkarian, S. Naumann, B. Cairns, A three-dimensional kinematic and dynamic model of the lower limb. J. Biomech. 22, 143–155 (1989)CrossRefGoogle Scholar
  65. 65.
    J. Dul, G.E. Johnson, A kinematic model of the human ankle. J. Biomed. Eng. 7, 137–143 (1985)CrossRefGoogle Scholar
  66. 66.
    S.H. Scott, D.A. Winter, Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J. Biomech. 26, 1091–1104 (1993)CrossRefGoogle Scholar
  67. 67.
    S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007)CrossRefGoogle Scholar
  68. 68.
    A.J. van den Bogert, G.D. Smith, B.M. Nigg, In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. J. Biomech. 27, 1477–1488 (1994)CrossRefGoogle Scholar
  69. 69.
    V.T. Inman, The Joints of the Ankle (Williams and Wilkins, Baltimore, 1976)Google Scholar
  70. 70.
    R.D. Gregorio, V. Parenti-Castelli, J.J. O’Connor, A. Leardini, Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med. Biol. Eng. Comput. 45, 305–313 (2007)CrossRefGoogle Scholar
  71. 71.
    G.S. Lewis, H.J. Sommer, S.J. Piazza, In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes. J. Biomech. Eng. 128, 596–603 (2006)CrossRefGoogle Scholar
  72. 72.
    R.J. de Asla, L. Wan, H.E. Rubash, G. Li, Six dof in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J. Orthop. Res. 24, 1019–1027 (2006)CrossRefGoogle Scholar
  73. 73.
    P.C. Liacouras, J.S. Wayne, Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 129, 811–817 (2007)CrossRefGoogle Scholar
  74. 74.
    J.T.-M. Cheung, M. Zhang, K.-N. An, Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex. Clin. Biomech. 19, 839–846 (2004)CrossRefGoogle Scholar
  75. 75.
    J.T.-M. Cheung, M. Zhang, A.K.-L. Leung, Y.-B. Fan, Three dimensional finite element analysis of the foot during standing—a material sensitivity study. J. Biomech. 38, 1045–1054 (2005)CrossRefGoogle Scholar
  76. 76.
    I.C. Wright, R.R. Neptune, A.J. Van den Bogert, B.M. Nigg, The influence of foot positioning on ankle sprains. J. Biomech. 33, 513–519 (2000)CrossRefGoogle Scholar
  77. 77.
    I.C. Wright, R.R. Neptune, A.J. Van den Bogert, B.M. Nigg, The effects of ankle compliance and flexibility on ankle sprains. Med. Sci. Sports Exerc. 32, 260–265 (2000)CrossRefGoogle Scholar
  78. 78.
    F.L. Lewis, D.M. Dawson, C.T. Abdallah, Robot Manipulator Control, 2nd edn. (Marcel Dekker, New York, 2004)Google Scholar
  79. 79.
    T. Nef, M. Mihelj, R. Riener, ARMin: a robot for patient-cooperative arm therapy. Med. Biol. Eng. Comput. 45, 887–900 (2007)CrossRefGoogle Scholar
  80. 80.
    A. Deneve, S. Moughamir, L. Afilal, J. Zaytoon, Control system design of a 3-DOF upper limbs rehabilitation robot. Comput. Methods Programs Biomed. 89, 202–214 (2008)CrossRefGoogle Scholar
  81. 81.
    D. Erol, N. Sarkar, Design and implementation of an assistive controller for rehabilitation robotic systems. Int. J. Adv. Rob. Syst. 4, 271–278 (2007)Google Scholar
  82. 82.
    C.J. Kempf, S. Kobayashi, Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Trans. Control Syst. Technol. 7, 513–526 (1999)CrossRefGoogle Scholar
  83. 83.
    Y. Wang, Z. Xiong, H. Ding, X. Zhu, Nonlinear friction compensation and disturbance observer for a high-speed motion platform, in International Conference on Robotics and Automation, New Ordleans, LA, 2004, pp. 4515–4520Google Scholar
  84. 84.
    C.H. An, J.M. Hollerbach, Dynamic stability issues in force control of manipulators, in IEEE International Conference on Robotics and Automation, 1987, pp. 890–896Google Scholar
  85. 85.
    J.E. Colgate, N. Hogan, Robust control of dynamically interacting systems. Int. J. Control 48, 65–88 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    J.E. Colgate, N. Hogan, An analysis of contact instability in terms of passive physical equivalents, in IEEE International Conference on Robotics and Automation, 1989, pp. 404–409Google Scholar
  87. 87.
    S.P. Buerger, N. Hogan, Relaxing passivity for human-robot interaction, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 4570–4575Google Scholar
  88. 88.
    S.P. Buerger, N. Hogan, Complementary stability and loop shaping for improved human–robot interaction. IEEE Trans. Rob. 23, 232–244 (2007)CrossRefGoogle Scholar
  89. 89.
    T. Murakami, F. Yu, K. Ohnishi, Torque sensorless control in multidegree-of-freedom manipulator. IEEE Trans. Ind. Electron. 40, 259–265 (1993)CrossRefGoogle Scholar
  90. 90.
    S. Katsura, Y. Matsumoto, K. Ohnishi, Analysis and experimental validation of force bandwidth for force control. IEEE Trans. Ind. Electron. 53, 922–928 (2006)CrossRefGoogle Scholar
  91. 91.
    K. Kong, M. Tomizuka, H. Moon, B. Hwang, D. Jeon, Mechanical design and impedance compensation of SUBAR (Sogang University’s Biomedical Assist Robot), in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Xi’an, China, 2008, pp. 377–382Google Scholar
  92. 92.
    R. Raghu, Modelling surface electromyograms of the human masticatory system, Master’s thesis, The University of Auckland, 2003Google Scholar
  93. 93.
    S.I. Fox, Muscle: Mechanisms of Contraction and Neural Control, 5th edn. (Wm. C. Brown Publishers, 1996), Chap. 12, pp. 306–341Google Scholar
  94. 94.
    S.I. Fox, Muscle: Mechanisms of Contraction and Neural Control, 8th edn. (McGraw-Hill Higher Education, 2003), Chap. 12, pp. 324–363Google Scholar
  95. 95.
    L. S¨ornmo, P. Laguna, The Electromyogram (Academic Press, 2005), Chap. 5, pp. 337–410Google Scholar
  96. 96.
    R.F. Yazicioglu, T. Torfs, P. Merken, J. Penders, V. Leonov, R. Puers, B. Gyselinckx, C.V. Hoof, Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems. Microelectron. J. 40(9), 1313–1321 (2009)CrossRefGoogle Scholar
  97. 97.
    S. Patel, H. Park, P. Bonato, L. Chan, M. Rodgers, A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 9(21) 2012Google Scholar
  98. 98.
    A. Mohideen, S. Sidek, Development of emg circuit to study the relationship between flexor digitorum superficialis muscle activity and hand grip strength, in 4th International Conference on Mechatronics (ICOM), Kualar Lumpur, pp. 1–7 May 2011Google Scholar
  99. 99.
    A. Duschau-Wicke, J. Von Zitzewitz, A. Caprez, L. Lunenburger, R. Riener, Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 38–48 (2010)CrossRefGoogle Scholar
  100. 100.
    H. Vallery, A. Duschau-Wicke, R. Riener, Generalized elasticities improve patient-cooperative control of rehabilitation robots, in 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009, 2009, pp. 535–541Google Scholar
  101. 101.
    S. Jezernik, G. Colombo, M. Morari, Automatic gait-pattern adaptation for rehabilitation with 4-dof robotic orthosis. IEEE Trans. Robot. Autom. 20, 574–582 (2004)CrossRefGoogle Scholar
  102. 102.
    M. Mihelj, T. Nef, R. Riener, A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Adv. Robot. 21, 843–867 (2007)CrossRefGoogle Scholar
  103. 103.
    H.I. Krebs, J.J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B.T. Volpe, N. Hogan, Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton. Robot. 15, 7–20 (2003)CrossRefGoogle Scholar
  104. 104.
    E.T. Wolbrecht, V. Chan, D.J. Reinkensmeyer, J.E. Bobrow, Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 16, 286–297 (2008)CrossRefGoogle Scholar
  105. 105.
    D.J. Reinkensmeyer, J.L. Emken, S.C. Cramer, Robotics, motor learning, and neurologic recovery. Annu. Rev. Biomed. Eng. 6, 497–525 (2004)CrossRefGoogle Scholar
  106. 106.
    R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, V. Dietz, Patient-cooperative strategies for robot aided treadmill training: first experimental results. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 380–394 (2005)CrossRefGoogle Scholar
  107. 107.
    L. Marchal-Crespo, D.J. Reinkensmeyer, Review of control strategies for robotic movement training after neurologic injury, J. NeuroEng. Rehabil. 6 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The Department of Mechanical EngineeringThe University of AucklandAucklandNew Zealand

Personalised recommendations