Using Query-Log Based Collective Intelligence to Generate Query Suggestions for Tagged Content Search

  • Dirk Guijt
  • Claudia HauffEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9114)


One of the standard features of today’s major Web search engines are query suggestions, which aid the user in the formulation of their search queries. Over the years, a number of different approaches have been proposed which have commonly been evaluated in the standard Web search setting. In this work, we build a query suggestion pipeline based on the collective intelligence stored in log data collected from a more constrained search engine which uses tags to index the content. This constrained environment, though large-scale, differs considerably from standard Web search with respect to its users, indexing process and Web coverage. We implement a number of suggestion approaches based on query-flow and term-query graph models and investigate to what extent they are applicable in this more constrained environment.


Query suggestions Query-flow graphs Search sessions Collective intelligence Tags Tagged content 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A.: An optimization framework for query recommendation. In: WSDM 2010, pp. 161–170 (2010)Google Scholar
  2. 2.
    Baeza-Yates, R., Hurtado, C.A., Mendoza, M.: Query recommendation using query logs in search engines. In: Lindner, W., Fischer, F., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 588–596. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  3. 3.
    Bai, L., Guo, J., Cheng, X.: Query recommendation by modelling the query-flow graph. In: Salem, M.V.M., Shaalan, K., Oroumchian, F., Shakery, A., Khelalfa, H. (eds.) AIRS 2011. LNCS, vol. 7097, pp. 137–146. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Bai, L., Guo, J., Cheng, X., Geng, X., Du, P.: Exploring the query-flow graph with a mixture model for query recommendation. In: Proceedings of SIGIR Workshop on Query Representation and Understanding (2011)Google Scholar
  5. 5.
    Baraglia, R., Castillo, C., Donato, D., Nardini, F.M., Perego, R., Silvestri, F.: Aging effects on query flow graphs for query suggestion. In: CIKM 2009, pp. 1947–1950 (2009)Google Scholar
  6. 6.
    Beeferman, D., Berger, A.L.: Agglomerative clustering of a search engine query log. In: SIGKDD 2000, pp. 407–416 (2000)Google Scholar
  7. 7.
    Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S.: The query-flow graph: model and applications. In: CIKM 2008, pp. 609–618 (2008)Google Scholar
  8. 8.
    Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S.: Query suggestions using query-flow graphs. In: Proceedings of the 2009 Workshop on Web Search Click Data, pp. 56–63 (2009)Google Scholar
  9. 9.
    Boldi, P., Bonchi, F., Castillo, C., Vigna, S.: From “dango” to “japanese cakes”: query reformulation models and patterns. In: WI 2009, pp.183–190 (2009)Google Scholar
  10. 10.
    Bonchi, F., Perego, R., Silvestri, F., Vahabi, H., Venturini, R.: Efficient query recommendations in the long tail via center-piece subgraphs. In: SIGIR 2012, pp. 345–354 (2012)Google Scholar
  11. 11.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer networks and ISDN systems 30(1), 107–117 (1998)CrossRefGoogle Scholar
  12. 12.
    Bruza, P., Dennis, S.: Query reformulation on the internet: empirical data and the hyperindex search engine. In: RIAO 1997 (1997)Google Scholar
  13. 13.
    Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., Li, H.: Context-aware query suggestion by mining click-through and session data. In: SIGKDD 2008, pp. 875–883 (2008)Google Scholar
  14. 14.
    Craswell, N., Szummer, M.: Random walks on the click graph. In: SIGIR 2007, pp. 239–246 (2007)Google Scholar
  15. 15.
    Gayo-Avello, D.: A survey on session detection methods in query logs and a proposal for future evaluation. Inf. Sci. 179(12), 1822–1843 (2009)CrossRefGoogle Scholar
  16. 16.
    Hagen, M., Gomoll, J., Beyer, A., Stein, B.: From search session detection to search mission detection. In: OAIRGoogle Scholar
  17. 17.
    Hagen, M., Stein, B., Rüb, T.: Query session detection as a cascade. In: CIKM 2011, pp. 147–152 (2011)Google Scholar
  18. 18.
    Huang, C.-K., Chien, L.-F., Oyang, Y.-J.: Relevant term suggestion in interactive web search based on contextual information in query session logs. JASIST 54(7), 638–649 (2003)CrossRefGoogle Scholar
  19. 19.
    Huang, J., Efthimiadis, E.N.: Analyzing and evaluating query reformulation strategies in web search logs. In: CIKM 2009 (2009)Google Scholar
  20. 20.
    Lau, T., Horvitz, E.: Patterns of search: analyzing and modeling web query refinement. In: UMAP 1999, pp. 119–128 (1999)Google Scholar
  21. 21.
    Mei, Q., Zhou, D., Church, K.W.: Query suggestion using hitting time. In: CIKM 2008, pp. 469–478 (2008)Google Scholar
  22. 22.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web (1999)Google Scholar
  23. 23.
    Song, Y., Zhou, D., He, L.-w.: Query suggestion by constructing term-transition graphs. In: WSDM 2012, pp. 353–362 (2012)Google Scholar
  24. 24.
    Szpektor, I., Gionis, A., Maarek, Y.: Improving recommendation for long-tail queries via templates. In: WWW 2011, pp. 47–56 (2011)Google Scholar
  25. 25.
    White, R.W., Dumais, S.T.: Characterizing and predicting search engine switching behavior. In: CIKM 2009, pp. 87–96 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.SanomaHoofddorpThe Netherlands
  2. 2.Web Information SystemsTU DelftDelftThe Netherlands

Personalised recommendations