Skip to main content

Atomic Transport: Diffusion Equations

  • Chapter
Atomic Diffusion in Stars

Abstract

The transport equation is first obtained for the various diffusion processes using a simple approach which gives a tool sufficient for a first reading and which allows to carry out exploratory calculations. In a second section, the transport equations currently used in stellar evolution calculations are described and fully developed. Complications arising from the simultaneous presence of more than one state of ionization are analyzed and lead the reader to the embrionic research area of ambipolar diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We first neglect magnetic fields and rotation. In this chapter we will also frequently use the atomic mass symbol A i of an atom as a shorthand notation for the atom species itself.

  2. 2.

    v D thus defined will be positive in the direction of increasing r.

  3. 3.

    See § 5.2 and 5.3 of Spitzer (1962).

  4. 4.

    The electric field term, \((Z_{i} + 1)m_{p}g/(2kT)\), is thus excluded.

  5. 5.

    Which is equivalent to Eq. (6.62, 3) of Chapman and Cowling (1970).

  6. 6.

    Determined by Aller and Chapman (1960) and Burgers (1969).

  7. 7.

    See, for instance, Chapman and Cowling (1970) and Burgers (1969).

  8. 8.

    This velocity r i is equal to the local heat flow q i transported by particles of species i, divided by the thermal energy density of these particles—their partial pressure p i —[Burgers 1969, Eq. (2.17b)].

  9. 9.

    The coefficients K ij , \(\Omega _{ij}^{(l)}(r)\), \(\sigma _{ij}^{(a\,b)}\), and a ij , are symmetric with respect to i and j: \(\{i \leftrightarrow j\}\).

  10. 10.

    If one assumes that there are two dimensional currents similar, for instance, to meridional circulation, one does not need to assume that currents, Eq. (2.19), are negligible. These would then be linked to magnetic fields.

  11. 11.

    To simplify the discussion we first assume a perfect non-degenerate gas and negligible radiation pressure; then P gas = P.

  12. 12.

    Using the integrals of Paquette et al. 1986a (see also § A.1), one has

    $$\displaystyle{K_{ij} = \frac{m_{p}g} {Nv_{0}}N_{i}N_{j}a_{ij}(Z_{i}Z_{j})^{2}F_{ ij}^{(1)}(1)\,.}$$
  13. 13.

    The concept of Archimede’s law has been applied to particles in a solution by Landau and Lifshitz (1958), § 88.

  14. 14.

    Following Geiss and Burgi (1986a,b1987), Babel and Michaud (1991a) studied how the partial ionization of hydrogen affects the diffusion velocity of trace species.

  15. 15.

    The important \(\text{H}^{+} + \text{H}\) scattering cross-section was redetermined by Glassgold et al. (2005).

  16. 16.

    As noted by Geiss and Burgi (1986a); see their second paragraph after their Eq. (56a).

  17. 17.

    Equation (8) of Babel and Michaud (1991a).

  18. 18.

    From Eq. (12) of Babel and Michaud (1991a).

  19. 19.

    In other contexts, drift velocity is also used for the advective part of the diffusion velocity.

  20. 20.

    See Geiss and Burgi (1986a) for the required expressions.

  21. 21.

    A more detailed discussion may be found in Babel and Michaud (1991a).

Bibliography

  • Aller, L. H., & Chapman, S. (1960). Astrophysical Journal, 132, 461.

    Article  ADS  Google Scholar 

  • Babel, J., & Michaud, G. (1991a). Astronomy & Astrophysics, 248, 155.

    ADS  Google Scholar 

  • Burgers, J. M. (1969). Flow equations for composite gases. New York: Academic.

    MATH  Google Scholar 

  • Chapman, S., & Cowling, T. G. (1970). The mathematical theory of non-uniform gases (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Geiss, J., & Burgi, A. (1986a). Astronomy & Astrophysics, 159, 1.

    ADS  MATH  Google Scholar 

  • Geiss, J., & Burgi, A. (1986b). Astronomy & Astrophysics, 166, 398.

    ADS  Google Scholar 

  • Geiss, J., & Burgi, A. (1987). Astronomy & Astrophysics, 178, 286.

    ADS  Google Scholar 

  • Glassgold, A. E., Krstić, P. S., & Schultz, D. R. (2005). Astrophysical Journal, 621, 808.

    Article  ADS  Google Scholar 

  • Landau, L. D., & Lifshitz, E. M. (1958). Statistical physics. London: Pergamon Press.

    MATH  Google Scholar 

  • LeBlanc, F., Michaud, G., & Babel, J. (1994). Astrophysical Journal, 431, 388

    Article  ADS  Google Scholar 

  • Michaud, G. (1970). Astrophysical Journal, 160, 641.

    Article  ADS  Google Scholar 

  • Michaud, G. (1977b). In E. A. Muller (Ed.), Highlights of astronomy, Part II (Vol. 4, p. 177). Doldrectht: Reidel.

    Google Scholar 

  • Montmerle, T., & Michaud, G. (1976). Astrophysical Journal Supplement Series, 31, 489.

    Article  ADS  Google Scholar 

  • Paquette, C., Pelletier, C., Fontaine, G., & Michaud, G. (1986a). Astrophysical Journal Supplement Series, 61, 177.

    Article  ADS  Google Scholar 

  • Peterson, D. M., & Theys, J. C. (1981). Astrophysical Journal, 244, 947.

    Article  ADS  Google Scholar 

  • Richer, J., Michaud, G., Rogers, F., Iglesias, C., Turcotte, S., & LeBlanc, F. (1998). Astrophysical Journal, 492, 833.

    Article  ADS  Google Scholar 

  • Roussel-Dupré, R. (1981). Astrophysical Journal, 243, 329.

    Article  ADS  Google Scholar 

  • Schlattl, H. (2002). Astronomy & Astrophysics, 395, 85.

    Article  ADS  Google Scholar 

  • Spitzer, L. (1962). Physics of fully ionized gases. New York: Interscience Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michaud, G., Alecian, G., Richer, J. (2015). Atomic Transport: Diffusion Equations. In: Atomic Diffusion in Stars. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-19854-5_2

Download citation

Publish with us

Policies and ethics