Skip to main content

Population II Dwarfs

  • Chapter
Atomic Diffusion in Stars

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 843 Accesses

Abstract

Population II stellar evolution models have now been calculated for various metallicities. They are compared to observations of globular clusters and of field Pop II stars. Atomic diffusion affects the surface composition through separation occurring below the surface convection zone. It requires that the surface lithium abundance must have been reduced from the cosmological one. In the lowest metallicity clusters, in the absence of a process competing with diffusion, one would expect overabundances of metals and in particular of iron. Comparison to observed surface abundances suggests that turbulence is involved in modifying the efficiency of atomic diffusion. Models calculated with mass loss are less compatible with observations than those with turbulence. The age of globular clusters is reduced by about 2 Gyr which makes it compatible with recent determinations of the age of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See § III d) of Michaud et al. (1984a).

  2. 2.

    Vauclair (1988) or, as parametrized in the Yale models, Pinsonneault et al. (1999).

  3. 3.

    See Fig. 2 of Richard et al. (2002a).

  4. 4.

    See Fig. 2 of Richard et al. (2002a) which shows isochrones of M bcz.

  5. 5.

    See Fig. 1 of Richard et al. (2002a).

  6. 6.

    See Fig. 1 of Richer et al. (1998) and Chap. 9

  7. 7.

    Thermal diffusion adds a downward contribution to the diffusion velocity. It is significant and included in the calculations. It does not change qualitatively the discussion in this case.

  8. 8.

    See Figs. 5 and 11 of Richard et al. (2002a).

  9. 9.

    See Figs. 10 and 13 of Richard et al. (2002b).

  10. 10.

    See Fig. 8 of Korn et al. (2007).

  11. 11.

    See Lind et al. (2008) and Lind et al. (2009). There is however an uncertainty coming from the T eff scale, see González Hernández et al. (2009).

  12. 12.

    ​​ cite]Oapenheimer@Önehag et al. (2014) Önehag et al. (2014); see also Michaud et al. (2004b) for calculations of expected anomalies in this cluster.

  13. 13.

    See Fig. 15 of Sbordone et al. (2010).

  14. 14.

    See Casagrande et al. (2010) and Sbordone et al. (2010). The results of 3D−NLTE simulations confirm the 1D−LTE Li abundance determinations in low metallicity Pop II stars (Asplund et al. 2003) though changes to collision rates used in NLTE calculations might slightly lower the measured Li abundance value (Barklem et al. 2003).

  15. 15.

    By VandenBerg et al. (2010) who note in the last paragraph of their paper that there is a variation in ages of galactic clusters from 11 to 13.5 Gyr as their [Fe/H] varies from − 0. 8(47Tuc) to − 2. 4(M92). This probably implies a similar age difference for field stars of different metallicities. It could impact on the different behavior apparently observed by Sbordone et al. (2010) for very low metallicity field stars.

  16. 16.

    See Fig. 15 of Richard et al. (2002a) for the results of a different draw in which Z was also allowed to vary.

  17. 17.

    It has been argued (Salaris and Weiss 2001) that a larger sample of stars is needed to firmly establish this conclusion.

  18. 18.

    The simulated abundances are perhaps more constant than required by observations, so turbulence could be a little smaller.

  19. 19.

    See the discussion of Fig. 3 in Richard et al. (2005).

  20. 20.

    See the end of §3 of Richard et al. (2005).

  21. 21.

    The Li curve on Fig. 9 of Mucciarelli et al. (2011) is nearly identical to the 6.25 curve of Fig. 7 of Richard et al. (2005).

  22. 22.

    The D T of the T6.25 model at ρ = 0. 5 is nearly the same during evolution of the \(0.77\,M_{\odot }\) model as the value at the same ρ in the Sun that best fits the Sun and this up to the current solar age, as seen in Fig. 2 of Richard et al. (2005).

  23. 23.

    That is \(\left \vert E_{\mu }\right \vert = \left \vert E_{\Omega }\right \vert \) in the notation of Eq. (7.32).

  24. 24.

    This age reduction is more than a factor of 2 smaller than had been obtained by Noerdlinger and Arigo (1980) (see Sect. 10.2) because these authors used diffusion coefficients (Noerdlinger 1978) which are larger than the best current estimate (see Chap. 4).

  25. 25.

    See also Salaris et al. (2000) and Weiss (2002).

  26. 26.

    As may be seen from Fig. 3 of VandenBerg et al. (2002).

  27. 27.

    See VandenBerg et al. (2012); note the comparison of diffusion treatments in their § 3.

  28. 28.

    As noted at the end of § 3 of VandenBerg et al. (2012), the use of opacity tables instead of opacities consistent with local abundances of metals and specially CNO , modifies the opacity profile in stellar interiors. This is partly compensated by modifying the mixing length using a comparison of models calculated with opacity tables to those calculated as in Richard et al. (2002b) and Michaud et al. (2004b).

  29. 29.

    More precisely 13.77 ± 0.06 Gyr using WMAP (Bennett et al. 2013) and 13.82 ± 0.06 Gyr using Planck (Ade et al. 2014).

Bibliography

  • Ade, P. A. R., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., et al. (2014). Astronomy & Astrophysics, 571, A16.

    Article  Google Scholar 

  • Aoki, W., Frebel, A., Christlieb, N., Norris, J. E., Beers, T. C., Minezaki, T., et al. (2006). Astrophysical Journal, 639, 897.

    Article  ADS  Google Scholar 

  • Asplund, M., Carlsson, M., & Botnen, A. V. (2003). Astronomy & Astrophysics, 399, L31.

    Article  ADS  Google Scholar 

  • Asplund, M., Lambert, D. L., Nissen, P. E., Primas, F., & Smith, V. V. (2006). Astrophysical Journal, 644, 229.

    Article  ADS  Google Scholar 

  • Barklem, P. S., Belyaev, A. K., & Asplund, M. (2003). Astronomy & Astrophysics, 409, L1.

    Article  ADS  Google Scholar 

  • Bennett, C. L., Larson, D., Weiland, J. L., Jarosik, N., Hinshaw, G., Odegard, N., et al. (2013). Astrophysical Journal Supplement Series, 208, 20.

    Article  ADS  Google Scholar 

  • Boesgaard, A. M., Deliyannis, C. P., Stephens, A., & King, J. R. (1998). Astrophysical Journal, 493, 206.

    Article  ADS  Google Scholar 

  • Bonifacio, P. (2002). Astronomy & Astrophysics, 395, 515.

    Article  ADS  Google Scholar 

  • Bonifacio, P., Molaro, P., Sivarani, T., Spite, M., Spite, F., Cayrel, R., et al. (2003). Elemental abundances in old stars and damped Lyman-α systems. In 25th Meeting of the IAU, Joint Discussion 15, Sydney, 22 July 2003.

    Google Scholar 

  • Bonifacio, P., Pasquini, L., Spite, F., Bragaglia, A., Carretta, E., Castellani, V., et al. (2002). Astronomy & Astrophysics, 390, 91.

    Article  ADS  Google Scholar 

  • Casagrande, L., Ramírez, I., Meléndez, J., Bessell, M., & Asplund, M. (2010). Astronomy & Astrophysics, 512, A54.

    Article  ADS  Google Scholar 

  • Cayrel, R., Spite, M., Spite, F., & Audouze, J. (1999). Astronomy & Astrophysics, 343, 923.

    ADS  Google Scholar 

  • Cayrel, R., Steffen, M., Chand, H., Bonifacio, P., Spite, M., Spite, F., et al. (2007). Astronomy & Astrophysics, 473, L37.

    Article  ADS  Google Scholar 

  • Chaboyer, B., Fenton, W. H., Nelan, J. E., Patnaude, D. J., & Simon, F. E. (2001). Astrophysical Journal, 562, 521.

    Article  ADS  Google Scholar 

  • Christlieb, N., Bessell, M. S., Beers, T. C., Gustafsson, B., Korn, A., Barklem, P. S., et al. (2002). Nature, 419, 904.

    Article  ADS  Google Scholar 

  • Cyburt, R. H., Fields, B. D., & Olive, K. A. (2002). Astroparticle Physics, 17, 87.

    Article  ADS  Google Scholar 

  • Cyburt, R. H., Fields, B. D., & Olive, K. A. (2003). Physics Letters B, 567, 227.

    Article  ADS  Google Scholar 

  • Cyburt, R. H., Fields, B. D., & Olive, K. A. (2008). Journal of Cosmology and Astroparticle Physics, 11, 12.

    Article  ADS  Google Scholar 

  • Deliyannis, C. P., Demarque, P., & Kawaler, S. D. (1990). Astrophysical Journal Supplement Series, 73, 21.

    Article  ADS  Google Scholar 

  • Deliyannis, C. P., Demarque, P., Kawaler, S. D., Romanelli, P., & Krauss, L. M. (1989). Physical Review Letters, 62, 1583.

    Article  ADS  Google Scholar 

  • González Hernández, J. I., Bonifacio, P., Caffau, E., Steffen, M., Ludwig, H.-G., Behara, N. T., et al. (2009). Astronomy & Astrophysics, 505, L13.

    Article  ADS  Google Scholar 

  • Gratton, R. G., Bonifacio, P., Bragaglia, A., Carretta, E., Castellani, V., Centurion, M., et al. (2001). Astronomy & Astrophysics, 369, 87.

    Article  ADS  Google Scholar 

  • Grundahl, F., VandenBerg, D. A., Bell, R. A., Andersen, M. I., & Stetson, P. B. (2000). Astronomical Journal, 120, 1884.

    Article  ADS  Google Scholar 

  • Gruyters, P., Korn, A. J., Richard, O., Grundahl, F., Collet, R., Mashonkina, L. I., et al. (2013). Astronomy & Astrophysics, 555, A31.

    Article  ADS  Google Scholar 

  • Gruyters, P., Nordlander, T., & Korn, A. J. (2014). Astronomy & Astrophysics, 567, A72.

    Article  ADS  Google Scholar 

  • Keller, S. C., Bessell, M. S., Frebel, A., Casey, A. R., Asplund, M., Jacobson, H. R., et al. (2014). Nature, 506, 463

    Article  ADS  Google Scholar 

  • King, J. R., Stephens, A., Boesgaard, A. M., & Deliyannis, C. F. (1998). Astronomical Journal, 115, 666.

    Article  ADS  Google Scholar 

  • Korn, A. J., Grundahl, F., Richard, O., Barklem, P. S., Mashonkina, L., Collet, R., et al. (2006). Nature, 442, 657.

    Article  ADS  Google Scholar 

  • Korn, A. J., Grundahl, F., Richard, O., Mashonkina, L., Barklem, P. S., Collet, R., et al. (2007). Astrophysical Journal, 671, 402.

    Article  ADS  Google Scholar 

  • Lanzetta, K. M., Wolfe, A. M., & Turnshek, D. A. (1995). Astrophysical Journal, 440, 435.

    Article  ADS  Google Scholar 

  • Lind, K., Asplund, M., Collet, R., & Meléndez, J. (2012). Memorie della Societa Astronomica Italiana Supplementi, 22, 142.

    Google Scholar 

  • Lind, K., Korn, A. J., Barklem, P. S., & Grundahl, F. (2008). Astronomy & Astrophysics, 490, 777.

    Article  ADS  Google Scholar 

  • Lind, K., Primas, F., Charbonnel, C., Grundahl, F., & Asplund, M. (2009). Astronomy & Astrophysics, 503, 545.

    Article  ADS  Google Scholar 

  • Meléndez, J., Casagrande, L., Ramírez, I., Asplund, M., & Schuster, W. J. (2010). Astronomy & Astrophysics, 515, L3+.

    Google Scholar 

  • Michaud, G., & Charbonneau, P. (1991). Space Science Reviews, 57, 1.

    Article  ADS  Google Scholar 

  • Michaud, G., Fontaine, G., & Beaudet, G. (1984a). Astrophysical Journal, 282, 206.

    Article  ADS  Google Scholar 

  • Michaud, G., Richard, O., & Richer, J. (2004a), Memorie della Società Astronomica Italiana, 75, 339.

    Google Scholar 

  • Michaud, G., Richard, O., Richer, J., & VandenBerg, D. A. (2004b). Astrophysical Journal, 606, 452.

    Article  ADS  Google Scholar 

  • Mucciarelli, A., Salaris, M., Lovisi, L., Ferraro, F. R., Lanzoni, L., Lucatello, S., et al. (2011). Monthly Notices of the Royal Astronomical Society, 412, 81.

    Article  ADS  Google Scholar 

  • Nissen, P. E., Asplund, M., Hill, V., & D’Odorico, S. (2000). Astronomy & Astrophysics, 357, L49.

    ADS  Google Scholar 

  • Noerdlinger, P. D. (1978). Astrophysical Journal Supplement Series, 36, 259.

    Article  ADS  Google Scholar 

  • Noerdlinger, P. D., & Arigo, R. J. (1980). Astrophysical Journal, 237, L15.

    Article  ADS  Google Scholar 

  • Önehag, A., Gustafsson, B., & Korn, A. (2014). Astronomy & Astrophysics, 562, A102.

    Article  Google Scholar 

  • Pinsonneault, M. H., Walker, T. P., Steigman, G., & Narayanan, V. K. (1999). Astrophysical Journal, 527, 180.

    Article  ADS  Google Scholar 

  • Proffitt, C. R., & Michaud, G. (1989b). Astrophysical Journal, 346, 976.

    Article  ADS  Google Scholar 

  • Proffitt, C. R., & Michaud, G. (1991b). Astrophysical Journal, 371, 584.

    Article  ADS  Google Scholar 

  • Proffitt, C. R., & VandenBerg, D. A. (1991). Astrophysical Journal Supplement Series, 77, 473.

    Article  ADS  Google Scholar 

  • Ramirez, S. V., Cohen, J. G., Buss, J., & Briley, M. M. (2001). Astronomical Journal, 122, 1429.

    Article  ADS  Google Scholar 

  • Reeves, H. (1994). Reviews of Modern Physics, 66, 193.

    Article  ADS  Google Scholar 

  • Richard, O., Michaud, G., & Richer, J. (2002a). Astrophysical Journal, 580, 1100.

    Article  ADS  Google Scholar 

  • Richard, O., Michaud, G., & Richer, J. (2005). Astrophysical Journal, 619, 538.

    Article  ADS  Google Scholar 

  • Richard, O., Michaud, G., Richer, J., Turcotte, S., Turck-Chieze, S., & VandenBerg, D. A. (2002b). Astrophysical Journal, 568, 979.

    Article  ADS  Google Scholar 

  • Richer, J., Michaud, G., Rogers, F., Iglesias, C., Turcotte, S., & LeBlanc, F. (1998). Astrophysical Journal, 492, 833.

    Article  ADS  Google Scholar 

  • Ryan, S. G., Norris, J. E., & Beers, T. C. (1999). Astrophysical Journal, 523, 654.

    Article  ADS  Google Scholar 

  • Salaris, M., Groenewegen, M. A. T., & Weiss, A. (2000). Astronomy & Astrophysics, 355, 299.

    ADS  Google Scholar 

  • Salaris, M., & Weiss, A. (2001). Astronomy & Astrophysics, 376, 955.

    Article  ADS  Google Scholar 

  • Sbordone, L., Bonifacio, P., Caffau, E., Ludwig, H., Behara, N. T., Gonzalez Hernandez, J. I., et al. (2010). Astronomy & Astrophysics, 522, A26.

    Article  ADS  Google Scholar 

  • Smith, V. V., Lambert, D. L., & Nissen, P. E. (1998). Astrophysical Journal, 506, 405.

    Article  ADS  Google Scholar 

  • Spergel, D. N., Bean, R., Doré, O., Nolta, M. R., Bennett, C. L., Dunkley, J., et al. (2007). Astrophysical Journal Supplement Series, 170, 377.

    Article  ADS  Google Scholar 

  • Spite, F., & Spite, M. (1982). Astronomy & Astrophysics, 115, 357.

    ADS  Google Scholar 

  • Spite, M., Maillard, J.-P., & Spite, F. (1984). Astronomy & Astrophysics, 141, 56.

    ADS  Google Scholar 

  • Steffen, M., Cayrel, R., Caffau, E., Bonifacio, P., Ludwig, H.-G., & Spite, M. (2012). Memorie della Societa Astronomica Italiana Supplementi, 22, 152.

    Google Scholar 

  • Stetson, P. B., & Harris, W. E. (1988). Astronomical Journal, 96, 909.

    Article  ADS  Google Scholar 

  • Stringfellow, G. S., Bodenheimer, P., Noerdlinger, P. D., & Arigo, R. J. (1983). Astrophysical Journal, 264, 228.

    Article  ADS  Google Scholar 

  • Théado, S., & Vauclair, S. (2001). Astronomy & Astrophysics, 375, 70.

    Article  ADS  Google Scholar 

  • Thévenin, F., Charbonnel, C., de Freitas Pacheco, J. A., Idiart, T. P., Jasniewicz, G., de Laverny, P., et al. (2001). Astronomy & Astrophysics, 373, 905.

    Article  ADS  Google Scholar 

  • Thorburn, J. A. (1994). Astrophysical Journal, 421, 318.

    Article  ADS  Google Scholar 

  • VandenBerg, D. A., Bergbusch, P. A., Dotter, A., Ferguson, J. W., Michaud, G., Richer, J., et al. (2012). Astrophysical Journal, 755, 15.

    Article  ADS  Google Scholar 

  • VandenBerg, D. A., Bolte, M., & Stetsson, P. B. (1996). Annual Review of Astronomy and Astrophysics, 34, 461.

    Article  ADS  Google Scholar 

  • VandenBerg, D. A., Bond, H. E., Nelan, E. P., Nissen, P. E., Schaefer, G. H., & Harmer, D. (2014). Astrophysical Journal, 792, 110.

    Article  ADS  Google Scholar 

  • VandenBerg, D. A., Brogaard, K., Leaman, R., & Casagrande, L. (2013). Astrophysical Journal, 775, 134.

    Article  ADS  Google Scholar 

  • VandenBerg, D. A., Casagrande, L., & Stetson, P. B. (2010). Astronomical Journal, 140, 1020.

    Article  ADS  Google Scholar 

  • VandenBerg, D. A., Richard, O., Michaud, G., & Richer, J. (2002). Astrophysical Journal, 571, 487.

    Article  ADS  Google Scholar 

  • Vauclair, S. (1988). Astrophysical Journal, 335, 971.

    Article  ADS  Google Scholar 

  • Vauclair, S., & Charbonnel, C. (1995). Astronomy & Astrophysics, 295, 715.

    ADS  Google Scholar 

  • Vick, M., Michaud, G., Richer, J., & Richard, O. (2013). Astronomy & Astrophysics, 552, A131.

    Article  ADS  Google Scholar 

  • Weiss, A. (2002). In B. Battrick (Ed.), F. Favata, I. W. Roxburgh, & D. Galadi (Scientific Eds.), Proceedings of the First Eddington Workshop on Stellar Structure and Habitable Planet Finding, Córdoba, Spain, 11–15 June 2001. ESA SP-485 (p. 57). Noordwijk: ESA Publications Division.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michaud, G., Alecian, G., Richer, J. (2015). Population II Dwarfs. In: Atomic Diffusion in Stars. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-19854-5_10

Download citation

Publish with us

Policies and ethics