Skip to main content

Hysteretic Beam Model for Steel Wire Ropes Hysteresis Identification

  • Conference paper
  • First Online:
Structural Nonlinear Dynamics and Diagnosis

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 168))

Abstract

A nonlinear hysteretic beam model based on a geometrically exact planar beam theory combined with a continuum extension of the Bouc-Wen model of hysteresis is proposed to describe the memory-dependent dissipative response of short wire ropes which have the unique feature of exhibiting hysteretic energy dissipation due to the interwire friction. With the proposed model, hysteresis is introduced in the constitutive equation between the bending moment and the curvature within the special Cosserat theory of shearable beams. The model is indeed capable of describing the hysteretic behavior exhibited by short steel wire ropes subject to flexural cycles. The model parameters which best fit a series of experimental measurements for selected wire ropes are identified employing the Particle Swarm Optimization method . The identified parameters are used to reproduce other experimental tests on the same wire ropes obtaining a good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baber, T., Noori, M.: Random vibration of degrading, pinching systems. J. Eng. Mech. 111(8), 1010–1026 (1985)

    Article  Google Scholar 

  2. Baber, T., Wen, Y.: Random vibration hysteretic, degrading systems. J. Eng. Mech. Div. 107(6), 1069–1087 (1981)

    Google Scholar 

  3. Bouc, R.: Forced vibration of mechanical systems with hysteresis. In: Proceedings of the Fourth Conference on Non-linear oscillation, Prague, Czechoslovakia (1967)

    Google Scholar 

  4. Carboni, B., Lacarbonara, W.: A new vibration absorber based on the hysteresis of multi-configuration nitinol-steel wire ropes assemblies. In: MATEC Web of Conferences, vol. 16, p. 01004. EDP Sciences (2014)

    Google Scholar 

  5. Carboni, B., Lacarbonara, W., Auricchio, F.: Hysteresis of multiconfiguration assemblies of nitinol and steel strands: experiments and phenomenological identification. J. Eng. Mech. 141, 04014135 (2014)

    Google Scholar 

  6. Carpineto, N., Lacarbonara, W., Vestroni, F.: Hysteretic tuned mass dampers for structural vibration mitigation. J. Sound Vib. 333(5), 1302–1318 (2014)

    Article  ADS  Google Scholar 

  7. Casciati, F.: Stochastic dynamics of hysteretic media. Struct. Saf. 6(2), 259–269 (1989)

    Article  Google Scholar 

  8. Charalampakis, A., Dimou, C.: Identification of bouc-wen hysteretic systems using particle swarm optimization. Comput. Struct. 88(21), 1197–1205 (2010)

    Article  Google Scholar 

  9. Costello, G.: Theory of Wire Rope. Springer, New York (1990)

    Google Scholar 

  10. Crawley, E.F., ODonnell, K.J.: Identification of nonlinear system parameters in joints using the force-state mapping technique. AIAA Pap 86(1013), 659–667 (1986)

    Google Scholar 

  11. Demetriades, G., Constantinou, M., Reinhorn, A.: Study of wire rope systems for seismic protection of equipment in buildings. Eng. Struct. 15(5), 321–334 (1993)

    Article  Google Scholar 

  12. Dimou, C., Koumousis, V.: Reliability-based optimal design of truss structures using particle swarm optimization. J. Comput. Civil Eng. 23(2), 100–109 (2009)

    Article  Google Scholar 

  13. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1, pp. 81–86. IEEE (2001)

    Google Scholar 

  14. Fourie, P., Groenwold, A.: The particle swarm optimization algorithm in size and shape optimization. Struct. Multi. Optim. 23(4), 259–267 (2002)

    Article  Google Scholar 

  15. Fourie, P., Groenwold, A.A.: Particle swarms in topology optimization. In: Proceedings of the Fourth World Congress of Structural and Multidisciplinary Optimization, Dalian, China (2001)

    Google Scholar 

  16. Gerges, R.: Model for the force-displacement relationship of wire rope springs. J. Aerosp. Eng. 21(1), 1–9 (2008)

    Article  Google Scholar 

  17. Gerges, R., Vickery, B.: Parametric experimental study of wire rope spring tuned mass dampers. J. Wind Engi. Ind. Aerodyn. 91(12), 1363–1385 (2003)

    Article  Google Scholar 

  18. Gerges, R., Vickery, B.: Optimum design of pendulum-type tuned mass dampers. Struct. Des. Tall Spec. Build. 14(4), 353–368 (2005)

    Article  Google Scholar 

  19. Gholizadeh, S., Salajegheh, E.: Optimal design of structures subjected to time history loading by swarm intelligence and an advanced metamodel. Comput. Methods Appl. Mech. Eng. 198(37), 2936–2949 (2009)

    Article  ADS  Google Scholar 

  20. Gnanavel, B., Gopinath, D., Parthasarathy, N.: Effect of friction on coupled contact in a twisted wire cable. J. Appl. Mech. 77(2), 024501 (2010)

    Google Scholar 

  21. Gnanavel, B., Parthasarathy, N.: Effect of interfacial contact forces in radial contact wire strand. Arch. Appl. Mech. 81(3), 303–317 (2011)

    Article  ADS  MATH  Google Scholar 

  22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference of Neural Network IV, Perth, Australia

    Google Scholar 

  23. Kwok, N., Ha, Q., Nguyen, T., Li, J., Samali, B.: A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sens. Actuators A: Phys. 132(2), 441–451 (2006)

    Article  Google Scholar 

  24. Lacarbonara, W.: Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling. Springer, New York (2013)

    Google Scholar 

  25. Liu, B., Wang, L., Jin, Y.H., Tang, F., Huang, D.X.: Directing orbits of chaotic systems by particle swarm optimization. Chaos, Solitons Fractals 29(2), 454–461 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  27. Ma, J., Ge, S.R., Zhang, D.K.: Distribution of wire deformation within strands of wire ropes. J. China Univ. Min. Technol. 18(3), 475–478 (2008)

    Article  Google Scholar 

  28. Masri, S., Caughey, T.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46(2), 433–447 (1979)

    Article  ADS  Google Scholar 

  29. Multiphysics, C.: Version 3.5 a (2008)

    Google Scholar 

  30. Nucera, C., di Scalea, F.L.: Monitoring load levels in multi-wire strands by nonlinear ultrasonic waves. Struct. Health Monit. 10(6), 617–629 (2011)

    Article  Google Scholar 

  31. Quaranta, G., Monti, G., Marano, G.C.: Parameters identification of van der pol-duffing oscillators via particle swarm optimization and differential evolution. Mech. Syst. Sig. Process. 24(7), 2076–2095 (2010)

    Article  ADS  Google Scholar 

  32. Sauter, D., Hagedorn, P.: On the hysteresis of wire cables in stockbridge dampers. Int. J. Nonlinear Mech. 37(8), 1453–1459 (2002)

    Article  ADS  MATH  Google Scholar 

  33. Schutte, J., Groenwold, A.: Sizing design of truss structures using particle swarms. Struct. Multi. Optim. 25(4), 261–269 (2003)

    Article  Google Scholar 

  34. Simeonov, V.K., Sivaselvan, M.V., Reinhorn, A.M.: Nonlinear analysis of structural frame systems by the state-space approach. Comput. Aided Civil Infrastruct. Eng. 15(2), 76–89 (2000)

    Article  Google Scholar 

  35. Sivaselvan, M.V., Reinhorn, A.M.: Hysteretic models for deteriorating inelastic structures. J. Eng. Mech. 126(6), 633–640 (2000)

    Article  Google Scholar 

  36. Stockbridge, G.: Vibration damper. US patent 1,675,391 (1928)

    Google Scholar 

  37. Tinker, M., Cutchins, M.: Damping phenomena in a wire rope vibration isolation system. J. Sound Vib. 157(1), 7–18 (1992)

    Article  ADS  Google Scholar 

  38. Triantafyllou, S., Koumousis, V.: Bouc-wen type hysteretic plane stress element. J. Eng. Mech. 138(3), 235–246 (2011)

    Article  Google Scholar 

  39. Triantafyllou, S., Koumousis, V.: Small and large displacement dynamic analysis of frame structures based on hysteretic beam elements. J. Eng. Mech. 138(1), 36–49 (2011)

    Article  Google Scholar 

  40. Triantafyllou, S.P., Koumousis, V.K.: An hysteretic quadrilateral plane stress element. Arch. Appl. Mech. 82(10–11), 1675–1687 (2012)

    Article  ADS  MATH  Google Scholar 

  41. Venter, G., Sobieszczanski-Sobieski, J.: Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. Struct. Multi. Optim. 26(1–2), 121–131 (2004)

    Article  Google Scholar 

  42. Version, M.: 7.10. 0.499 (r2010a) (2010)

    Google Scholar 

  43. Vestroni, F., Lacarbonara, W., Carpineto, N.: Hysteretic tuned mass damper for passive control of mechanical vibration. Sapienza University of Rome, Italian Patent No. RM2011A000434 (2011)

    Google Scholar 

  44. Waisman, H., Montoya, A., Betti, R., Noyan, I.: Load transfer and recovery length in parallel wires of suspension bridge cables. J. Eng. Mech. 137(4), 227–237 (2010)

    Article  Google Scholar 

  45. Wen, Y.: Method for random vibration of hysteretic systems. J. Eng. Mech. Div. 102(2), 249–263 (1976)

    MATH  Google Scholar 

  46. Worden, K.: Data processing and experiment design for the restoring force surface method, part i: integration and differentiation of measured time data. Mech. Syst. Sig. Process. 4(4), 295–319 (1990)

    Article  ADS  Google Scholar 

  47. Worden, K.: Data processing and experiment design for the restoring force surface method, part ii: choice of excitation signal. Mech. Syst. Sig. Process. 4(4), 321–344 (1990)

    Article  ADS  Google Scholar 

  48. Ye, M.: Parameter identification of dynamical systems based on improved particle swarm optimization. In: Intelligent Control and Automation, pp. 351–360. Springer, Berlin (2006)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Italian Ministry of Education, University and Scientific Research (2010-2011 PRIN Grant No. 2010BFXRHS-002) and by a FY 2013 Sapienza Grant N. C26A13JPY9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Lacarbonara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Carboni, B., Mancini, C., Lacarbonara, W. (2015). Hysteretic Beam Model for Steel Wire Ropes Hysteresis Identification. In: Belhaq, M. (eds) Structural Nonlinear Dynamics and Diagnosis. Springer Proceedings in Physics, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-19851-4_13

Download citation

Publish with us

Policies and ethics