A Statistical Framework for Mental Targets Search Using Mixture Models

  • Taoufik BdiriEmail author
  • Nizar Bouguila
  • Djemel Ziou
Part of the Studies in Computational Intelligence book series (SCI, volume 607)


Image retrieval is usually based on specific user needs that are expressed under the form of explicit queries that lead to retrieve target images. In many cases, a given user does not possess the adequate tools and semantics to express what he/she is looking for, thus, his/her target image resides in his/her mind while he/she can visually identify it. We propose in this work, a statistical framework that enables users to start a search process and interact with the system in order to find their target “mental image”, using visual features only. Our bayesian formulation provides the possibility of searching multi target classes within the same search process. Data are modeled by a generalized inverted Dirichlet mixture that also serves to quantify the similarities between images. We run experiments including real users and we present a case study of a search process that gives promising results in terms of number of iterations needed to find the mental target classes within a given dataset.


Mental search Image retrieval Bayesian models Generalized inverted dirichlet Mixture models 



The completion of this research was made possible thanks to the Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. 1.
    Bdiri, T., Bouguila, N., Ziou, D.: A statistical framework for online learning using adjustable model selection criteria. Eng. Appl. Artif. Intell. (2014) (manuscript submitted for publication)Google Scholar
  2. 2.
    Bdiri, T., Bouguila, N., Ziou, D.: Object clustering and recognition using multi-finite mixtures for semantic classes and hierarchy modeling. Expert Syst. Appl. 41(4, Part 1), 1218–1235 (2014)Google Scholar
  3. 3.
    Bdiri, T., Bouguila, N., Ziou, D.: Visual scenes categorization using a flexible hierarchical mixture model supporting users ontology. In: IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 262–267 (2013)Google Scholar
  4. 4.
    Bourouis, S., Mashrgy, M., Bouguila, N.: Bayesian learning of finite generalized inverted dirichlet mixtures: application to object classification and forgery detection. Expert Syst. Appl. 41(5), 2329–2336 (2014)CrossRefGoogle Scholar
  5. 5.
    Boutemedjet, S., Ziou, D.: Long-term relevance feedback and feature selection for adaptive content based image suggestion. Pattern Recogn. 43(12), 3925–3937 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cox, I., Miller, M., Minka, T., Papathomas, T., Yianilos, P.: The bayesian image retrieval system, pichunter: theory, implementation, and psychophysical experiments. IEEE Trans. Image Process. 9(1), 20–37 (2000)CrossRefGoogle Scholar
  7. 7.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 886–893. IEEE Computer Society (2005)Google Scholar
  8. 8.
    Fan, W., Bouguila, N., Ziou, D.: Unsupervised hybrid feature extraction selection for high-dimensional non-gaussian data clustering with variational inference. IEEE Trans. Knowl. Data Eng. 25(7), 1670–1685 (2013)CrossRefGoogle Scholar
  9. 9.
    Fan, W., Bouguila, N., Ziou, D.: Variational learning of finite dirichlet mixture models using component splitting. Neurocomputing 129, 3–16 (2014)CrossRefGoogle Scholar
  10. 10.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: Computer Vision and Pattern Recognition Workshop, CVPRW ’04. pp. 178–178 (2004)Google Scholar
  11. 11.
    Ferecatu, M., Geman, D.: A statistical framework for image category search from a mental picture. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1087–1101 (2009)CrossRefGoogle Scholar
  12. 12.
    Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Qian, H., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: the qbic system. Computer 28(9), 23–32 (1995)CrossRefGoogle Scholar
  13. 13.
    Jia, L., Wang, J.: Real-time computerized annotation of pictures. IEEE Trans. Pattern. Anal. Mach. Intell. 30(6), 985–1002 (2008)CrossRefGoogle Scholar
  14. 14.
    Kaasinen, A., Yong-Ik, Y.: Service engagement model for mobile advertising based on user behavior. In: International Conference on Information Networking (ICOIN). pp. 131–134 (2013)Google Scholar
  15. 15.
    Kherfi, M., Ziou, D.: Relevance feedback for cbir: a new approach based on probabilistic feature weighting with positive and negative examples. IEEE Trans. Image Process. 15(4), 1017–1030 (2006)CrossRefGoogle Scholar
  16. 16.
    Kim, S., Qin, T., Liu, T., Yu, H.: Advertiser-centric approach to understand user click behavior in sponsored search. Inf. Sci. 276, 242–254 (2014)CrossRefGoogle Scholar
  17. 17.
    Lingappaiah, G.S.: On the generalised inverted dirichlet distribution. Demonstratio Math. 9, 423–433 (1976)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lokoc, J., Grosup, T., Cech, P., Skopal, T.: Towards efficient multimedia exploration using the metric space approach. In: 12th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–4 (2014)Google Scholar
  19. 19.
    Mashrgy, M., Bdiri, T., Bouguila, N.: Robust simultaneous positive data clustering and unsupervised feature selection using generalized inverted dirichlet mixture models. Knowl. Based Syst. 59, 182–195 (2014)CrossRefGoogle Scholar
  20. 20.
    Pan, J., Ren, Y., Wu, H., Zhu, M.: Query generation for semantic datasets. In: Proceedings of the Seventh International Conference on Knowledge Capture. pp. 113–116. K-CAP ’13. ACM (2013)Google Scholar
  21. 21.
    Shahab Saquib, S., Jamshed, S., Rashid, A.: User feedback based evaluation of a product recommendation system using rank aggregation method. In: Advances in Intelligent Informatics, Advances in Intelligent Systems and Computing, vol. 320, pp. 349–358. Springer International Publishing (2015)Google Scholar
  22. 22.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  23. 23.
    Suditu, N., Fleuret, F.: Heat: Iterative relevance feedback with one million images. In: IEEE International Conference on Computer Vision (ICCV), pp. 2118–2125 (2011)Google Scholar
  24. 24.
    Suditu, N., Fleuret, F.: Iterative relevance feedback with adaptive exploration/exploitation trade-off. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management. pp. 1323–1331. CIKM’12. ACM (2012)Google Scholar
  25. 25.
    Vasconcelos, N., Lippman, A.: A probabilistic architecture for content-based image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 216–221 (2000)Google Scholar
  26. 26.
    Yong, R., Huang, T., Ortega, M., Mehrotra, S.: Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Trans. Circuits Syst. Video Technol. 8(5), 644–655 (1998)CrossRefGoogle Scholar
  27. 27.
    Zhimin, Y., Xiangzhan, Y., Hongli, Z.: Commodity recommendation algorithm based on social network. Advances in Computer Science and Its Applications. Lecture Notes in Electrical Engineering, vol. 279, pp. 27–33. Springer, Berlin Heidelberg (2014)Google Scholar
  28. 28.
    Zhou, X., Huang, T.: Relevance feedback in image retrieval: a comprehensive review. Multimedia Syst. 8(6), 536–544 (2003)CrossRefGoogle Scholar
  29. 29.
    Ziou, D., Hamri, T., Boutemedjet, S.: A hybrid probabilistic framework for content-based image retrieval with feature weighting. Pattern Recogn. 42(7), 1511–1519 (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada
  2. 2.Concordia Institute for Information Systems EngineeringConcordia UniversityMontrealCanada
  3. 3.DI, Faculté des SciencesUniversité de SherbrookeSherbrookeCanada

Personalised recommendations