Comparison of Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs

  • Fabio Nobile
  • Lorenzo TamelliniEmail author
  • Raul Tempone
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 106)


In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw–Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework.



F. Nobile and L. Tamellini have been partially supported by the Swiss National Science Foundation under the Project No. 140574 “Efficient numerical methods for flow and transport phenomena in heterogeneous random porous media” and by the Center for ADvanced MOdeling Science (CADMOS). R. Tempone is a member of the KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering.


  1. 1.
    I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Beck, F. Nobile, L. Tamellini, R. Tempone, On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22(09) (2012)Google Scholar
  3. 3.
    J. Beck, F. Nobile, L. Tamellini, R. Tempone, A quasi-optimal sparse grids procedure for groundwater flows, in Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012. Lecture Notes in Computational Science and Engineering, vol. 95 (Springer International Publishing, Switzerland, 2014), pp. 1–16Google Scholar
  4. 4.
    H. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Chkifa, On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection. J. Approx. Theory 166(0), 176–200 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Chkifa, A. Cohen, C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14(4), 601–633 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Cohen, R. Devore, C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’S. Anal. Appl. 9(1), 11–47 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    T. Gerstner, M. Griebel, Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. Griebel, S. Knapek, Optimized general sparse grid approximation spaces for operator equations. Math. Comput. 78(268), 2223–2257 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. Narayan, J.D. Jakeman, Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation. SIAM J. Sci. Comput. 36(6), A2952–A2983 (2014)CrossRefzbMATHGoogle Scholar
  11. 11.
    F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal sparse-grids approximation of Hilbert-space-valued functions: application to random elliptic PDEs. Accepted for publication on Numerische Mathematik. Also available as Mathicse report 12/2014, EPFLGoogle Scholar
  12. 12.
    C. Schillings, C. Schwab, Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Probl. 29(6) (2013)Google Scholar
  13. 13.
    D. Xiu, J. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.CSQI - MATHICSEÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Applied Mathematics and Computational ScienceKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations