Skip to main content

High-Order Adaptive Galerkin Methods

  • Conference paper

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 106)

Abstract

We design adaptive high-order Galerkin methods for the solution of linear elliptic problems and study their performance. We first consider adaptive Fourier-Galerkin methods and Legendre-Galerkin methods, which offer unlimited approximation power only restricted by solution and data regularity. Their analysis of convergence and optimality properties reveals a sparsity degradation for Gevrey classes. We next turn our attention to the h p-version of the finite element method, design an adaptive scheme which hinges on a recent algorithm by P. Binev for adaptive h p-approximation, and discuss its optimality properties.

Keywords

  • Polynomial Degree
  • Greedy Approach
  • Posteriori Error Estimator
  • Data Oscillation
  • Galerkin Solution

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Bank, A. Parsania, S. Sauter, Saturation estimates for hp-finite element methods. Technical. Report 03, ETH-Zurich (2014)

    Google Scholar 

  2. P. Binev, Instance optimality for h p-type approximation. Oberwolfach Rep. 39, 14–16 (2013)

    Google Scholar 

  3. P. Binev, Tree approximation for h p-adaptivity. In preparation

    Google Scholar 

  4. P. Binev, R. DeVore. Fast computation in adaptive tree approximation. Numer. Math. 97(2), 193–217 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. P. Binev, W. Dahmen, R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. D. Braess, V. Pillwein, J. Schöberl, Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Eng. 198(13–14), 1189–1197 (2009)

    CrossRef  MATH  Google Scholar 

  7. M. Bürg, W. Dörfler, Convergence of an adaptive h p finite element strategy in higher space-dimensions. Appl. Numer. Math. 61(11), 1132–1146 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. C. Canuto, M. Verani, On the numerical analysis of adaptive spectral/h p methods for elliptic problems, in Analysis and Numerics of Partial Differential Equations. Springer INdAM Series, vol. 4 (Springer, Milan, 2013), pp. 165–192

    Google Scholar 

  9. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods. Fundamentals in Single Domains. Scientific Computation (Springer, Berlin, 2006)

    Google Scholar 

  10. C. Canuto, R.H. Nochetto, M. Verani, Adaptive Fourier-Galerkin methods. Math. Comput. 83(288), 1645–1687 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. C. Canuto, R.H. Nochetto, M. Verani, Contraction and optimality properties of adaptive Legendre-Galerkin methods: the one-dimensional case. Comput. Math. Appl. 67(4), 752–770 (2014)

    CrossRef  MathSciNet  Google Scholar 

  12. C. Canuto, V. Simoncini, M. Verani, On the decay of the inverse of matrices that are sum of Kronecker products. Linear Algebra Appl. 452, 21–39 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. C. Canuto, R.H. Nochetto, R. Stevenson, M. Verani, A feasible super-aggressive Galerkin-Fourier method. In preparation

    Google Scholar 

  14. C. Canuto, R.H. Nochetto, R. Stevenson, M. Verani, Convergence and Optimality of h p-AFEM (2015). arXiv:1503.03996

    Google Scholar 

  15. C. Canuto, V. Simoncini, M. Verani, Contraction and optimality properties of an adaptive Legendre-Galerkin method: the multi-dimensional case. J. Sci. Comput. 63(3), 769–798 (2015)

    CrossRef  MathSciNet  Google Scholar 

  16. J.M. Cascón, C. Kreuzer, R.H. Nochetto, K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. W. Dahmen, K. Scherer, Best approximation by piecewise polynomials with variable knots and degrees. J. Approx. Theory 26(1), 1–13 (1979)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. R. DeVore, K. Scherer, Variable knot, variable degree spline approximation to x β, in Quantitative Approximation (Proc. Internat. Sympos., Bonn, 1979) (Academic, New York, 1980), pp. 121–131

    Google Scholar 

  19. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. W. Dörfler, V. Heuveline, Convergence of an adaptive h p finite element strategy in one space dimension. Appl. Numer. Math. 57(10), 1108–1124 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. A. Ern, M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. INRIA Preprint (2014)

    Google Scholar 

  22. W. Gui, I. Babuška, The h,  p and h-p versions of the finite element method in 1 dimension. II. The error analysis of the h- and h-p versions. Numer. Math. 49(6), 613–657 (1986)

    Google Scholar 

  23. W. Gui, I. Babuška, The h,  p and h-p versions of the finite element method in 1 dimension. III. The adaptive h-p version. Numer. Math. 49(6), 659–683 (1986)

    Google Scholar 

  24. J.M. Melenk, B.I. Wohlmuth, On residual-based a posteriori error estimation in h p-FEM. Adv. Comput. Math. 15(1–4), 311–331 (2001). A posteriori error estimation and adaptive computational methods

    Google Scholar 

  25. P. Morin, R.H. Nochetto, K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (electronic) (2000)

    Google Scholar 

  26. R.H. Nochetto, K.G. Siebert, A. Veeser, Theory of adaptive finite element methods: an introduction, in Multiscale, Nonlinear and Adaptive Approximation (Springer, Berlin, 2009), pp. 409–542

    CrossRef  Google Scholar 

  27. K. Scherer, On optimal global error bounds obtained by scaled local error estimates. Numer. Math. 36(2), 151–176 (1980)

    CrossRef  MathSciNet  Google Scholar 

  28. A. Schmidt, K.G. Siebert, A posteriori estimators for the h-p version of the finite element method in 1D. Appl. Numer. Math. 35(1), 43–66 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  29. Ch. Schwab, p- and h p-finite element methods, in Numerical Mathematics and Scientific Computation (The Clarendon Press, Oxford University Press, New York, 1998). Theory and applications in solid and fluid mechanics

    Google Scholar 

  30. R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  32. A. Veeser, Approximating gradients with continuous piecewise polynomial functions. Technical report, Dipartimento di Matematica ‘F. Enriques’, Università degli Studi di Milano (2012)

    Google Scholar 

Download references

Acknowledgements

The authors “Claudio Canuto” and “Marco Verani” were partially supported by the Italian national grant PRIN 2012HBLYE4. The author “Ricardo H. Nochetto” was partially supported by NSF grants DMS-1109325 and DMS-1411808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo H. Nochetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Canuto, C., Nochetto, R.H., Stevenson, R., Verani, M. (2015). High-Order Adaptive Galerkin Methods. In: Kirby, R., Berzins, M., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-19800-2_4

Download citation