Well-Posedness, Stability and Conservation for a Discontinuous Interface Problem: An Initial Investigation

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 106)

Abstract

A robust interface treatment for the discontinuous coefficient advection equation satisfying time-independent jump conditions is presented. The aim of the investigation is to show how the different concepts like well-posedness, conservation and stability are related. The equations are discretized using high order finite difference methods on Summation By Parts (SBP) form. The interface conditions are weakly imposed using the Simultaneous Approximation Term (SAT) procedure. Spectral analysis and numerical simulations corroborate the theoretical findings.

References

  1. 1.
    M.H. Carpenter, D. Gottlieb, S. Abarbanel, Time-stable boundary conditions for finite difference schemes solving hyperbolic systems: methodology and applications to high-order compact schemes. J. Comput. Phys. 129, 220–236 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M.H. Carpenter, J. Nordström, D. Gottlieb, A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    M.H. Carpenter, J. Nordström, D. Gottlieb, Revisiting and extending interface penalties for multi-domain summation-by-parts operators. J. Sci. Comput. 45, 118–150 (2010)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Gong, J. Nordström, Interface procedures for finite difference approximations of the advection-diffusion equation. J. Comput. Appl. Math. 236(5), 602–620 (2011)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Gustafsson, H.O. Kreiss, A. Sundström, Stability theory of difference approximations for mixed initial boundary value problems, II. Math. Comput. 26(119), 649–686 (1972)MATHCrossRefGoogle Scholar
  6. 6.
    J.E. Kozdon, E.M. Dunham, J. Nordström, Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. J. Sci. Comput. 55(1), 92–124 (2013)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    H.O. Kreiss, Stability theory of difference approximations for mixed initial boundary value problems, I. Math. Comput. 22(104), 703–714 (1968)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    C. La Cognata, J. Nordström, Well-Posedness, Stability and Conservation for a Discontinuous Interface Problem. LiTH-MAT-R–2014/16–SE, Department of Mathematics, Linköping University, 2014Google Scholar
  9. 9.
    K. Mattsson, J. Nordström, High order finite difference methods for wave propagation in discontinuous media. J. Comput. Phys. 200, 249–269 (2006)CrossRefGoogle Scholar
  10. 10.
    K. Mattsson, M. Svärd, J. Nordström, Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Nordström, R. Gustafsson, High order finite difference approximations of electromagnetic wave propagation close to material discontinuities. J. Sci. Comput. 18(2), 214–234 (2003)CrossRefGoogle Scholar
  12. 12.
    J. Nordström, J. Gong, E. Van der Weide, M. Svärd, A stable and conservative high order multi-block method for the compressible Navier-Stokes equations. J. Comput. Phys. 228(24), 9020–9035 (2009)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    B. Strand, Summation by parts for finite difference approximation for d/dx. J. Comput. Phys. 110(1), 47–67 (1994)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Svärd, J. Nordström, Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Computational MathematicsLinköping UniversityLinköpingSweden

Personalised recommendations