Skip to main content

C 0 Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems

  • Conference paper

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 106)

Abstract

We consider the C 0 interior penalty Galerkin method for biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn-Hilliard type. We establish the convergence of the method and present numerical results to illustrate its performance. We also compare it with the Argyris C 1 finite element method, the Ciarlet-Raviart mixed finite element method, and the Morley nonconforming finite element method.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   164.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   164.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 1

References

  1. A. Adini, R.W. Clough, Analysis of plate bending by the finite element method. NSF Report G.7337 (1961)

    Google Scholar 

  2. J.H. Argyris, I. Fried, D.W. Scharpf, The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. R. Aeronaut. Soc. 72, 701–709 (1968)

    Google Scholar 

  3. I. Babuška, J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis II, ed. by P.G. Ciarlet, J.L. Lions (North-Holland, Amsterdam, 1991), pp. 641–787

    Google Scholar 

  4. I. Babuška, J. Osborn, J. Pitkäranta, Analysis of mixed methods using mesh dependent norms. Math. Comput. 35, 1039–1062 (1980)

    CrossRef  MATH  Google Scholar 

  5. P.E. Bjørstad, B.P. Tjøstheim, High precision solution of two fourth order eigenvalue problems. Computing 63, 97–107 (1999)

    CrossRef  MathSciNet  Google Scholar 

  6. H. Blum, R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. D. Boffi, F. Brezzi, L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69, 121–140 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. S.C. Brenner, C 0 interior penalty methods, in Frontiers in Numerical Analysis - Durham 2010. Lecture Notes in Computational Science and Engineering, vol. 85 (Springer, Berlin, 2012), pp. 79–147

    Google Scholar 

  9. S.C. Brenner, M. Neilan, A C0 interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49, 869–892 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. S.C. Brenner, L. Sung, C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)

    Google Scholar 

  11. S.C. Brenner, K. Wang, J. Zhao, Poincaré-Friedrichs inequalities for piecewise H 2 functions. Numer. Funct. Anal. Optim. 25, 463–478 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. S.C. Brenner, S. Gu, T. Gudi, L.-Y. Sung, A quadratic C 0 interior penalty method for linear fourth order boundary value problems with boundary conditions of the Cahn-Hilliard type. SIAM J. Numer. Anal. 50, 2088–2110 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. S.C. Brenner, M. Neilan, L.-Y. Sung, Isoparametric C 0 interior penalty methods. Calcolo 49, 35–67 (2013)

    CrossRef  MathSciNet  Google Scholar 

  14. J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system-I: interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    CrossRef  Google Scholar 

  15. P.G. Ciarlet, P.-A. Raviart, A mixed finite element method for the biharmonic equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations (Proc. Sympos., Math. Res. Center, University of Wisconsin, Madison, WI, 1974). (Academic Press, New York, 1974), pp. 125–145

    Google Scholar 

  16. G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei, R.L. Taylor, Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. R. Falk, J. Osborn, Error estimates for mixed methods. RAIRO Anal. Numér. 14, 249–277 (1980)

    MathSciNet  MATH  Google Scholar 

  18. J. Hu, Y. Huang, Q. Shen, The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators. J. Sci. Comput. 58, 574–591 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. B. Mercier, J. Osborn, J. Rappaz, P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36, 427–453 (1981)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. P. Monk, A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24, 737–749 (1987)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. L. Morley, The triangular equilibrium problem in the solution of plate bending problems. Aeronaut. Q. 19, 149–169 (1968)

    Google Scholar 

  22. R. Rannacher, Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. J. Sun, A new family of high regularity elements. Numer. Methods Partial Differ. Equ. 28, 1–16 (2012)

    CrossRef  MATH  Google Scholar 

  24. G.N. Wells, N.T. Dung, A C 0 discontinuous Galerkin formulation for Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 196, 3370–3380 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. C. Wieners, Bounds for the N lowest eigenvalues of fourth-order boundary value problems. Computing 59, 29–41 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author was supported in part by the NSF Grant DMS-1319172. The work of the second author is supported in part by the Air Force Office of Scientific Research Grant FA9550-13-1-0199 and by NSF Grant DMS-1216620. The work of the third author is supported in part by NSF Grants DMS-1521555 and DMS-132139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne C. Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brenner, S.C., Monk, P., Sun, J. (2015). C 0 Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems. In: Kirby, R., Berzins, M., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-19800-2_1

Download citation