Skip to main content

Cell Therapy for Regeneration of the Corneal Epithelium in Aniridic Patients

  • Chapter
Aniridia

Abstract

Stem cell therapy may in the future become a routine treatment for aspects of aniridia. In this chapter we will discuss how one such corneal stem cell therapy approach is already in use in the clinic as an unlicensed experimental medicine, the results achieved so far and the likely direction of future research to improve therapy efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mann I (1944) A study of epithelial regeneration in the living eye. Br J Ophthalmol 28:26–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Davanger M, Evenson A (1971) Role of the pericorneal structure in renewal of corneal epithelium. Nature 299:560–561

    Article  Google Scholar 

  3. Cotsarelis G, Cheng G, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    Article  CAS  PubMed  Google Scholar 

  4. Majo F, Rochat A, Nicolas M, Jacoude GA, Barrandon Y (2008) Oligopotent stem cells are distributed throughout the entire mammalian ocular surface. Nature 456:250–254

    Article  CAS  PubMed  Google Scholar 

  5. Sun TT, Tseng SC, Lavker RM (2010) Location of corneal epithelial stem cells. Nature 463:E10–E11

    Article  CAS  PubMed  Google Scholar 

  6. Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89:529–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Shortt AJ, Secker GA, Munro PM et al (2007) Characterisation of the limbal epithelial stem cell niche: novel imaging techniques permit in-vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 5:1402–1409

    Article  Google Scholar 

  8. Dziasko MA, Armer HE, Levis HJ, Shortt AJ, Tuft S, Daniels JT (2014) Localisation of epithelial cells capable of holoclone formation in vitro and direct interaction with stromal cells in the native human limbal crypt. PLoS One 9:e94283

    Article  PubMed Central  PubMed  Google Scholar 

  9. Mayer KL, Nordlund ML, Schwartz GS, Holland EJ (2003) Keratopathy in congenital aniridia. Ocul Surf 1:74–79

    Article  PubMed  Google Scholar 

  10. Lee H, Khan R, O’Keefe M (2008) Aniridia: current pathology and management. Acta Ophthalmol 86:708–715

    Article  CAS  PubMed  Google Scholar 

  11. Li W, Chen YT, Hayashida Y et al (2008) Down-regulation of PAX6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases. J Pathol 214:114–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Holland EJ, Djalilian AR, Schwartz GS (2003) Management of aniridic keratopathy with keratolimbal allograft: a limbal stem cell transplantation technique. Ophthalmology 110:125–130

    Article  PubMed  Google Scholar 

  13. Shortt AJ, Secker GA, Rajan M et al (2008) Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmology 115:1989–1997

    Article  PubMed  Google Scholar 

  14. Lagali N, Eden U, Utheim TP, Chen X, Riise R, Dellby A, Fagerholm P (2013) In vivo morphology of the limbal palisades of vogt correlates with progressive stem cell deficiency in aniridia-related keartopathy. Invest Ophthalmol Vis Sci 54:5333–5342

    Article  PubMed  Google Scholar 

  15. Le Q, Deng SX, Xu J (2013) In vivo confocal microscopy of congenital aniridia-associated keratopathy. Eye (Lond) 27:763–766

    Article  CAS  Google Scholar 

  16. Lopez-Garcia JS, Rivas L, Garcia-Lozano I, Murube J (2008) Autologous serum eyedrops in the treatment of aniridic keratopathy. Ophthalmology 115:262–267

    Article  CAS  PubMed  Google Scholar 

  17. Pellegrini G, Treverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated human epithelium. Lancet 349:990–993

    Article  CAS  PubMed  Google Scholar 

  18. Ahmad S, Kolli S, Lako M, Figueiredo F, Daniels J (2010) Stem cell therapies for ocular surface disease. Drug Discov Today 15:306–313

    Article  CAS  PubMed  Google Scholar 

  19. Kim JC, Tseng SC (1995) The effects on inhibition of corneal neovascularization after human amniotic membrane transplantation in severely damaged rabbit corneas. Korean J Ophthalmol 9:32–46

    Article  CAS  PubMed  Google Scholar 

  20. Tseng SC, Prabhasawat P, Barton K, Gray T, Meller D (1998) Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 116:431–441

    Article  CAS  PubMed  Google Scholar 

  21. Tsai RJ, Li LM, Chen JK (2000) Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 343:86–93

    Article  CAS  PubMed  Google Scholar 

  22. Shortt AJ, Secker GA, Lomas RJ et al (2009) The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex-vivo expansion of limbal epithelial cells. Biomaterials 30:1056–1065

    Article  CAS  PubMed  Google Scholar 

  23. Shortt AJ, Bunce C, Levis HJ et al (2014) Three-year outcomes of cultured limbal epithelial allografts in aniridia and Stevens-Johnson syndrome evaluated using the clinical Outcome Assessment in Surgical Trials assessment tool. Stem Cells Transl Med 3:265–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G (2010) Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363:147–155

    Article  CAS  PubMed  Google Scholar 

  25. Sangwan VS, Basu S, Vemuganti GK et al (2011) Clinical outcomes of xeno-free autologous cultivated limbal epithelial transplantation: a 10-year study. Br J Ophthalmol 95:1525–1529

    Article  PubMed  Google Scholar 

  26. Sangwan VS, Matalia HP, Vemuganti GK et al (2006) Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian J Ophthalmol 54:29–34

    Article  PubMed  Google Scholar 

  27. Pauklin M, Fuchsluger TA, Westekemper H, Steuhl KP, Meller D (2010) Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Dev Ophthalmol 45:57–70

    Article  PubMed  Google Scholar 

  28. Daya SM, Watson A, Sharoe JR, Giledi O, Rowe A, Martin R, James SE (2005) Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112:470–477

    Article  PubMed  Google Scholar 

  29. Eden U, Fagerholm P, Danyali R, Lagali N (2012) Pathologic epithelial and anterior corneal nerve morphology in early-stage congenital aniridic keratopathy. Ophthalmology 119:1803–1810

    Article  PubMed  Google Scholar 

  30. Inatomi T, Nakamura M, Koizumi N, Sotozono C, Yokoi N, Kinoshita S (2006) Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. Am J Ophthalmol 141:267–275

    Article  PubMed  Google Scholar 

  31. Nakamura T, Takeda K, Inatomi T, Sotozono C, Kinoshita S (2011) Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol 95:942–946

    Article  PubMed  Google Scholar 

  32. Gaddipati S, Muralidhar R, Sangwan VS, Mariappan I, Vemuganti GK, Balasubramanian D (2014) Oral epithelial cells transplanted on to corneal surface tend to adapt to the ocular phenotype. Indian J Ophthalmol 62:644–648

    Article  PubMed Central  PubMed  Google Scholar 

  33. Blazejekska EA, Schlotzer-Schrehardt U, Zenkel M, Bachmann B, Chankiewitz E, Jacobi C, Kruse FE (2009) Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal-like epithelial cells. Stem Cells 27(3):642–652

    Google Scholar 

  34. Collinson JM, Quinn JC, Hill RE, West JD (2003) The roles of PAX6 in the cornea, retina and olfactory epithelium of the developing mouse embryo. Dev Biol 255:303–312

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  36. Hayashi R, Ishikawa Y, Ito M, Kageyama T et al (2012) Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One 7:e45435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Mort RL, Bentley AJ, Martin FL et al (2011) Effects of aberrant PAX6 gene dosage on mouse corneal pathophysiology and corneal epithelial homeostasis. PLoS One 6:e28895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Notara M, Shortt AJ, Galatowicz G, Calder V, Daniels JT (2010) IL6 and the human limbal stem cell niche: a mediator of epithelial-stromal interaction. Stem Cell Res 5:188–200

    Article  CAS  PubMed  Google Scholar 

  39. Chen SY, Hayashida Y, Chen MY, Xie HT, Tseng SC (2011) A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods 17:537–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Tsai RJ, Tsai RY (2014) From stem cell niche environments to engineering of corneal epithelium tissue. Jpn J Ophthalmol 58:111–119

    Article  CAS  PubMed  Google Scholar 

  41. Levis H, Daniels JT (2009) New technologies in limbal epithelial stem cell transplantation. Curr Opin Biotechnol 20:593–597

    Article  CAS  PubMed  Google Scholar 

  42. Feng Y, Borrelli M, Reichl S, Schrader S, Geerling G (2014) Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res 39:541–552

    Article  CAS  PubMed  Google Scholar 

  43. Brown RA, Wiseman M, Chuo CB, Cheema U, Nazhat SN (2005) Ultra-rapid engineering of biomimetic tissues: a plastic compression fabrication process for nanao-micro structures. Adv Funct Mater 15:1762–1770

    Article  CAS  Google Scholar 

  44. Levis HJ, Brown RA, Daniels JT (2010) Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 31:7726–7737

    Article  CAS  PubMed  Google Scholar 

  45. Kureshi AK, Drake RA, Daniels JT (2014) Challenges in the development of a reference standard and potency assay for the clinical production of RAFT tissue equivalents for the cornea. Regen Med 9:167–177

    Article  CAS  PubMed  Google Scholar 

  46. Massie I, Levis HJ, Daniels JT (2014) Response of human limbal epithelial cells to wounding on 3D RAFT tissue equivalents: effect of airlifting and human limbal fibroblasts. Exp Eye Res 127:196–205

    Article  CAS  PubMed  Google Scholar 

  47. Levis HJ, Menzel-Severing J, Drake RA, Daniels JT (2013) Plastic compressed collagen constructs for ocular cell culture and transplantation: a new and improved technique of confined fluid loss. Curr Eye Res 38:41–52

    Article  CAS  PubMed  Google Scholar 

  48. Levis HJ, Massie I, Dziasko MA, Kaasi A, Daniels JT (2013) Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture. Biomaterials 34:8860–8868

    Article  CAS  PubMed  Google Scholar 

  49. Ksander BR, Kolovou PE, Wilson BJ et al (2014) ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 511:353–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ouyang H, Xue Y, Lin Y et al (2014) WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature 511:358–361

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie T. Daniels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Daniels, J.T., Tuft, S.J., Shortt, A.J. (2015). Cell Therapy for Regeneration of the Corneal Epithelium in Aniridic Patients. In: Parekh, M., Poli, B., Ferrari, S., Teofili, C., Ponzin, D. (eds) Aniridia. Springer, Cham. https://doi.org/10.1007/978-3-319-19779-1_10

Download citation

Publish with us

Policies and ethics