Dolphin 1D: Improving Automation of Targeted Metabolomics in Multi-matrix Datasets of \(^1\)H-NMR Spectra

  • Josep GómezEmail author
  • Maria Vinaixa
  • Miguel A. Rodríguez
  • Reza M. Salek
  • Xavier Correig
  • Nicolau Cañellas
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 375)


Nuclear magnetic resonance (NMR) is one of the main tools applied in the field of metabolomics. Extracting all the valuable information from large datasets of \(^1\)H-NMR spectra is a huge challenge for high throughput metabolomics analysis. The tools that currently exist to improve signal assignment and metabolite quantification do not have the versatility of allowing the quantification of unknown signals or choosing different quantification approaches in the same analysis. Moreover, graphical features and informative outputs are needed in order to be aware of the reliability of the final results in a field where position shifting, baseline masking and signal overlap may produce errors between samples. Here we present a software package called Dolphin 1D, which aim is to improve targeted metabolite analysis in large datasets of \(^1\)H-NMR by combining user interactivity with automatic algorithms. Its performance has been tested on a multi-matrix set composed by total serum, urine, liver aqueous extracts and brain aqueous extracts of rat. Our strategy pretends to offer a useful solution for every kind of matrix, avoiding black-box processes and subjectivities user-user in automatic signal quantification.


Metabolite targeted analysis \(^1\)H-NMR Metabolomics tool Multi-matrix profiling 


  1. 1.
    Nicholson, J.K., Lindon, J.C., Holmes, E.: ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica Fate Foreign Compd. Biol. Syst. 29(11), 1181–1189 (1999)CrossRefGoogle Scholar
  2. 2.
    Chen, H.W., Pan, Z.Z., Talaty, N., Raftery, D., Cooks, R.G.: Combining desorption electrospray ionization mass spectrometry and nuclear magnetic resonance for differential metabolomics without sample preparation. Rapid Commun. Mass Spectrom. 20, 1577–1584 (2006)CrossRefGoogle Scholar
  3. 3.
    Beckonert, O., Keun, H.C., Ebbels, T.M.D., Bundy, J.G., Holmes, E., Lindon, J.C., Nicholson, J.K.: Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692–2703 (2007)CrossRefGoogle Scholar
  4. 4.
    Alves, A.C., Rantalainen, M., Holmes, E., Nicholson, J.K., Ebbels, T.M.D.: Analytic properties of statistical total correlation spectroscopy based information recovery in H-1 NMR metabolic data sets. Anal. Chem. 81, 2075–2084 (2009)CrossRefGoogle Scholar
  5. 5.
    Anderson, P.E., Reo, N.V., DelRaso, N.J., Doom, T.E., Raymer, M.L.: Gaussian binning: a new kernel-based method for processing NMR spectroscopic data for metabolomics. Metabolomics 4, 261–272 (2008)CrossRefGoogle Scholar
  6. 6.
    Jacob, D., Deborde, C., Moing, A.: An efficient spectra processing method for metabolite identification from H-1-NMR metabolomics data. Anal. Bioanal. Chem. 405, 5049–5061 (2013)CrossRefGoogle Scholar
  7. 7.
    Eads, C.D., Furnish, C.M., Noda, I., Juhlin, K.D., Cooper, D.A., Morrall, S.W.: Molecular factor analysis applied to collections of NMR spectra. Anal. Chem. 76, 1982–1990 (2004)CrossRefGoogle Scholar
  8. 8.
    Ochs, M.F., Stoyanova, R.S., Arias-Mendoza, F., Brown, T.R.: A new method for spectral decomposition using a bilinear Bayesian approach. J. Magn. Reson. 137, 161–176 (1999)CrossRefGoogle Scholar
  9. 9.
    Stoyanova, R., Nicholson, J.K., Lindon, J.C., Brown, T.R.: Sample classification based on Bayesian spectral decomposition of metabonomic NMR data sets. Anal. Chem. 76, 3666–3674 (2004)CrossRefGoogle Scholar
  10. 10.
    Hao, J., Astle, W., De Iorio, M., Ebbels, T.M.D.: BATMAN - an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics 28, 2088–2090 (2012)CrossRefGoogle Scholar
  11. 11.
    Hao, J., Liebeke, M., Astle, W., De Iorio, M., Bundy, J.G., Ebbels, T.M.D.: Bayesian deconvolution and quantification of metabolites in complex 1d NMR spectra using BATMAN. Nat. Protoc. 9, 1416–1427 (2014)CrossRefGoogle Scholar
  12. 12.
    Laatikainen, R., Niemitz, M., Malaisse, W.J., Biesemans, M., Willem, R.: A computational strategy for the deconvolution of NMR spectra with multiplet structures and constraints: Analysis of overlapping C-13-H-2 multiplets of C-13 enriched metabolites from cell suspensions incubated in deuterated media. Magn. Reson. Med. 36, 359–365 (1996)CrossRefGoogle Scholar
  13. 13.
    Soininen, P., Haarala, J., Vepsalainen, J., Niemitz, M., Laatikainen, R.: Strategies for organic impurity quantification by H-1 NMR spectroscopy: constrained total-line-shape fitting. Anal. Chimica Acta 542, 178–185 (2005)CrossRefGoogle Scholar
  14. 14.
    Vinaixa, M., Rodriguez, M.A., Rull, A., Beltran, R., Blade, C., Brezmes, J., Canellas, N., Joven, J., Correig, X.: Metabolomic assessment of the effect of dietary cholesterol in the progressive development of fatty liver disease. J. Proteome Res. 9, 2527–2538 (2010)CrossRefGoogle Scholar
  15. 15.
    Domange, C., Canlet, C., Traore, A., Bielicki, G., Keller, C., Paris, A., Priymenko, N.: Orthologous metabonomic qualification of a rodent model combined with magnetic resonance imaging for an integrated evaluation of the toxicity of hypochoeris radicata. Chem. Res. Toxicol. 21, 2082–2096 (2008)CrossRefGoogle Scholar
  16. 16.
    Cohen, S.M., Ohnishi, T., Clark, N.M., He, J., Arnold, L.L.: Investigations of rodent urinary bladder carcinogens: collection, processing, and evaluation of urine and bladders. Toxicol. Pathol. 35, 337–347 (2007)CrossRefGoogle Scholar
  17. 17.
    Wishart, D.S., Jewison, T., Guo, A.C., Wilson, M., Knox, C., Liu, Y., Djoumbou, Y., Mandal, R., Aziat, F., Dong, E., Bouatra, S., Sinelnikov, I., Arndt, D., Xia, J., Liu, P., Yallou, F., Bjorndahl, T., Perez-Pineiro, R., Eisner, R., Allen, F., Neveu, V., Greiner, R., Scalbert, A.: HMDB 3.0-the human metabolome database in 2013. Nucleic Acids Res. 41, D801–D807 (2013)CrossRefGoogle Scholar
  18. 18.
    Ludwig, C., Easton, J.M., Lodi, A., Tiziani, S., Manzoor, S.E., Southam, A.D., Byrne, J.J., Bishop, L.M., He, S., Arvanitis, T.N., Guenther, U.L., Viant, M.R.: Birmingham metabolite library: a publicly accessible database of 1-D H-1 and 2-D H-1 J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics 8, 8–18 (2012)CrossRefGoogle Scholar
  19. 19.
    Ulrich, E.L., Akutsu, H., Doreleijers, J.F., Harano, Y., Ioannidis, Y.E., Lin, J., Livny, M., Mading, S., Maziuk, D., Miller, Z., Nakatani, E., Schulte, C.F., Tolmie, D.E., Wenger, R.K., Yao, H., Markley, J.L.: BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008)CrossRefGoogle Scholar
  20. 20.
    Gomez, J., Brezmes, J., Mallol, R., Rodriguez, M.A., Vinaixa, M., Salek, R.M., Correig, X., Canellas, N.: Dolphin: a tool for automatic targeted metabolite profiling using 1d and 2d H-1-NMR data. Anal. Bioanal. Chem. 406, 7967–7976Google Scholar
  21. 21.
    Serkova, N., Fuller, T.F., Klawitter, J., Freise, C.E., Niemann, C.U.: H-1-NMR-based metabolic signatures of mild and severe ischemia/reperfusion injury in rat kidney transplants. Kidney International 67(3), 1142–1151 WOS:000227013500037 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Josep Gómez
    • 1
    • 2
    Email author
  • Maria Vinaixa
    • 1
    • 2
  • Miguel A. Rodríguez
    • 1
    • 2
  • Reza M. Salek
    • 3
  • Xavier Correig
    • 1
    • 2
  • Nicolau Cañellas
    • 1
    • 2
  1. 1.Metabolomics Platform, IISPVUniversitat Rovira I Virgili, Campus SesceladesTarragona, CataloniaSpain
  2. 2.CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic DisordersBarcelona, CataloniaSpain
  3. 3.European Bioinformatics Institute (EMBL-EBI) European Molecular Biology LaboratoryCambridgeUK

Personalised recommendations