Advertisement

Obtaining Relevant Genes by Analysis of Expression Arrays with a Multi-agent System

  • Alfonso GonzálezEmail author
  • Juan Ramos
  • Juan F. De Paz
  • Juan M. Corchado
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 375)

Abstract

Triple negative breast cancer (TNBC) is an aggressive form of breast cancer. Despite treatment with chemotherapy, relapses are frequent and response to these treatments is not the same in younger women as in older women. Therefore, the identification of genes that provoke this disease is required, as well as the identification of therapeutic targets. There are currently different hybridization techniques, such as expression arrays, which measure the signal expression of both the genomic and transcriptomic levels of thousands of genes of a given sample. Probesets of Gene 1.0 ST GeneChip arrays provide the ultimate genome transcript coverage, providing a measurement of the expression level of the sample. This paper proposes a multi-agent system to manage information of expression arrays, with the goal of providing an intuitive system that is also extensible to analyze and interpret the results. The roles of agent integrate different types of techniques, from statistical and data mining techniques that select a set of genes, to search techniques that find pathways in which such genes participate, and information extraction techniques that apply a CBR system to check if these genes are involved in the disease.

Keywords

Expression arrays Multi-agent system CBR system Pathway 

Notes

Acknowledgments

This work has been c has been supported by the Spanish Government through the project iHAS (grant TIN2012-36586-C01/C02/C03) and FEDER funds.

References

  1. 1.
    Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., Rebollo, M.: An abstract architecture for virtual organizations: The THOMAS approach. Knowl. Inf. Syst. 29(2), 379–403 (2011)CrossRefGoogle Scholar
  2. 2.
    Armstrong, N.J., Van De Wiel, M.A.: Microarray data analysis: From hypotheses to conclusions using gene expression data. Cell Oncol. 26(5–6), 279–290 (2004)Google Scholar
  3. 3.
    Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chong, C.K., Chai, L.E.: A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains. Bioprocess Biosyst. Eng. 37(3), 521–532 (2014)Google Scholar
  4. 4.
    Corchado, J.M., De Paz, J.F., Rodríguez, S., Bajo, J.: Model of experts for decision support in the diagnosis of leukemia patients. Artif. Intell. Med. 46(3), 179–200 (2009)CrossRefGoogle Scholar
  5. 5.
    De Paz, J.F., Bajo, J., Vera, V., Corchado, J.M.: MicroCBR: a case-based reasoning architecture for the classification of microarray data. Appl. Soft Comput. 11(8), 4496–4507 (2011)CrossRefGoogle Scholar
  6. 6.
    De Paz, J.F., Benito R., Bajo, J., Rodríguez-Vicente A., Abáigar M.: aCGH-MAS: analysis of aCGH by means of multi-agent system. Hindawi Publishing Corporation (In press)Google Scholar
  7. 7.
    Dermitzakis, E.T.: From gene expression to diseaserisk. Nat. Genet. 40(5), 492–493 (2008)CrossRefGoogle Scholar
  8. 8.
    Elzi, D.J., Song, M., Hakala, K., Weintraub, S.T., Shiio, Y.: Wnt antagonist SFRP1 functions as a secreted mediator of senescence. Mol. Cell. Biol. 32(21), 4388–4399 (2012)CrossRefGoogle Scholar
  9. 9.
    Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.-R., Forslund, K., Eddy, S.R., Sonnhammer, E.L.L., Bateman, A.: The Pfam protein families database. Nucl. Acids Res. 36(Database issue), D281–D288 (2008)Google Scholar
  10. 10.
    Gene Ontology Consortium.: The gene ontology (GO) database and informatics resource. Nucl. Acids Res. 32(Database issue), D258–D261 (2004)Google Scholar
  11. 11.
    Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G.R., Wu, G.R., Matthews, L., Lewis, S., Birney, E., Stein, L.: Reactome: a knowledgebase of biological pathways. Nucl. Acids Res. 33(Database issue), D428–D432 (2005). doi: 10.1093/nar/gki072
  12. 12.
    Kapur, K., Xing, Y., Ouyang, Z., Wong, W.H.: Exon arrays provide accurate assessments of gene expression. Genome Biol. 8(5), R82 (2007)CrossRefGoogle Scholar
  13. 13.
    Knudsen, S.: Cancer Diagnostics with DNA Microarrays. Wiley-Liss (2006)Google Scholar
  14. 14.
    Lockhart, D.J., Winzeler, E.A.: Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000)CrossRefGoogle Scholar
  15. 15.
    Maglietta, R., D’Addabbo, A., Piepoli, A., Perri, F., Liuni, S., Pesole, G., Ancona, N.: Selection of relevant genes in cancer diagnosis based on their prediction accuracy. Artif. Intell. Med. 40(1), 29–44 (2007)CrossRefGoogle Scholar
  16. 16.
    Mantripragada, K.K., Buckley, P.G., Diaz de Stahl, T., Dumanski, J.P.: Genomic microarrays in the spotlight. Trends Genet. 20(2), 87–94 (2004)Google Scholar
  17. 17.
    Nguyen, T.P., Ho, T.B.: Detecting disease genes based on semi-supervised learning and protein–protein interaction networks. Artif. Intell. Med. 54(1), 63–71 (2012)CrossRefGoogle Scholar
  18. 18.
    Ng, S.-K., Zhang, Z., Tan, S.-H., Lin, K.: InterDom: a database of putative interacting protein domains for validating predicted protein interactions and complexes. Nucl. Acids Res. 31(1), 251–254 (2003)CrossRefGoogle Scholar
  19. 19.
    Nuber, U.A.: DNA Microarrays. Taylor & Francis group, New York (2005)Google Scholar
  20. 20.
    Pinkel, D., Albertson, D.G.: Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37, 11–17 (2005)CrossRefGoogle Scholar
  21. 21.
    The UniProt Consortium.: The universal protein resource (UniProt). Nucl. Acids Res. 35(Database issue), D193–D197 (2007)Google Scholar
  22. 22.
    Vogelstein, B., Kinzler, K.W.: Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004)CrossRefGoogle Scholar
  23. 23.
    Wang, P., Young, K., Pollack, J., Narasimham, B., Tibshirani, R.: A method for callong gains and losses in array CGH data. Biostatistics 6(1), 45–58 (2005)CrossRefzbMATHGoogle Scholar
  24. 24.
    Ylstra, B., Van den Ijssel, P., Carvalho, B., Meijer, G.: BAC to the future! or oligonucleotides: a perspective for microarray comparative genomic hybridization (array CGH). Nucl. Acids Res. 34, 445–450 (2006)CrossRefGoogle Scholar
  25. 25.
    Zhang, J., Wu, L.-Y., Zhang, X.-S., Zhang, S.: Discovery of co-occurring driver pathways in cancer. BMC Bioinform. 15(1), 271 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alfonso González
    • 1
    Email author
  • Juan Ramos
    • 1
  • Juan F. De Paz
    • 1
  • Juan M. Corchado
    • 1
  1. 1.Biomedical Research Institute of Salamanca/BISITE Research GroupUniversity of Salamanca, Edificio I+D+ISalamancaSpain

Personalised recommendations