Identification of a Putative Ganoderic Acid Pathway Enzyme in a Ganoderma Australe Transcriptome by Means of a Hidden Markov Model

  • Germán López-GartnerEmail author
  • Daniel Agudelo-Valencia
  • Sergio Castaño
  • Gustavo A. Isaza
  • Luis F. Castillo
  • Mariana Sánchez
  • Jeferson Arango
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 375)


Ganoderma australe is a fungus widely used as a traditional medicine mainly in Eastern countries, but not studied in silico at the genomic level. This species is probably related to other well characterized fungus with similar properties, which may facilitate gene finding through comparative molecular analysis using appropriated bioinformatics tools. This paper aims to present a preliminary analysis of a G. australe transcriptome through some computational biology techniques implementing Hidden Markov Models (HMM) in order to predict a key putative enzyme (lanosterol synthase, EC involved in the metabolic pathway of triterpenoids of therapeutic interest. The findings suggest that the HMM approach results more efficient than traditional comparisons by homology based on methods of multiple sequences alignment. Here we report the first evidence of a putative lanosterol synthase protein being expressed in cell cultures of G. australe.


HMM bioinformatics Ganoderma Gene finding 



This work is supported by the Call for Special Project funding for Research and Innovation at the University of Caldas 2013.


  1. 1.
    Punta, M., Ofran, Y.: The rough guide to in silico function prediction, or how to use sequence and structure information to predict protein function. PLoS Comput. Biol. 4(10), e1000160 (2008). doi: 10.1371/journal.pcbi.1000160 CrossRefGoogle Scholar
  2. 2.
    Watson, J.D., Laskowski, R.A., Thornton, J.M.: Predicting protein function from sequence and structural data. Curr. Opin. Struct. Biol. 15, 275–284 (2005)CrossRefGoogle Scholar
  3. 3.
    Lee, D., Redfern, O., Orengo, C.: Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8, 995–1005 (2007). doi: 10.1038/nrm2281 CrossRefGoogle Scholar
  4. 4.
    Azad, R.K., Borodovsky, M.: Probabilistic methods of identifying genes in prokaryotic genomes: connections to the HMM theory. Briefings Bioinform. 5(2), 118–130 (2004)CrossRefGoogle Scholar
  5. 5.
    Erjavec, J., Kos, J., Ravnikar, M., Dreo, T., Sabotic, J.: Proteins of higher fungi – from forest to application. Trends Biotechnol. 30(5), 259–273 (2012)CrossRefGoogle Scholar
  6. 6.
    Rai, R.D., Singh, S.K., Yadav, M.C., Tewari, R.P.: Mushroom Biology and Biotechnology, Mushroom Society of India, Solan (H.P.) (2007)Google Scholar
  7. 7.
    Russell, R., Paterson, M.: Ganoderma – a therapeutic fungal biofactory. Phytochemistry 67, 1985–2001 (2006)CrossRefGoogle Scholar
  8. 8.
    Keller, N.P., Turner, G., Bennett, J.W.: Fungal secondary metabolism - from biochemistry to genomics. Nature Rev. Microbiol. 3, 937–947 (2005)CrossRefGoogle Scholar
  9. 9.
    Dinesh, B.P., Subhasree, R.S.: The sacred mushroom “Reishi”-a review. American-Eurasian J. Bot. 1(3), 107–110 (2008)Google Scholar
  10. 10.
    Ozel, Y.K., Gedikli, S., Aytar, P., Unal, A., Yamac, M., Cabuk, A., Kolankaya, N.: New fungal biomasses for cyanide biodegradation. J. Biosci. Bioeng. 110(4), 431–435 (2010)Google Scholar
  11. 11.
    Shimizu, E., Velez, J., Rueda, P., Zapata, L., Villalba, L.: Relación entre degradación de colorantes y oxidación de lignina residual causados por Ganoderma applanatum y Pycnoporus sanguineus en el licor negro kraft. Revista de Ciencia y Tecnología. 11(12), 46–51 (2009)Google Scholar
  12. 12.
    Rigas, F., Papadopoulou, K., Dritsa, V., Doulia, D.: Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J. Hazard. Mater. 140, 325–332 (2007)Google Scholar
  13. 13.
    Chuang, H.-W., Wang, I.-W., Lin, S.-Y., Chang, Y.-L.: Transcriptome analysis of cadmium response in Ganoderma lucidum. FEMS Microbiol. Lett. 293, 205–213 (2009)Google Scholar
  14. 14.
    Chang, Y., Yang, J.S., Yang, J.L., Wu, C., Chang, S., Lu, K., Lin, J., Hsia, T., Lin, Y., Ho, C., Wood, W.G., Chung, J.: Ganoderma lucidum extracts inhibited leukemia WEHI-3 cells in BALB-c mice and promoted an immune response in vivo. Biosci. Biotechnol. Biochem. 73(12), 2589–2594 (2009)Google Scholar
  15. 15.
    Karwa, A., Gaikwad, S., Rai, M.K.: Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.:Fr.) P. Karst and their role as antimicrobials and antibiotic activity enhancers. Int. J. Med. Mushrooms 13(5), 483–491 (2011)Google Scholar
  16. 16.
    Li, N., Hu, Y.L., He, C.X., Hu, C.J., Zhou, J., Tang, G.P., Gao, J.Q.: Preparation, characterization, and anti-tumour activity of Ganoderma lucidum polysaccharide nanoparticles. J. Pharm. Pharmacol. 62(1), 139–144 (2010)Google Scholar
  17. 17.
    González Muñoz, A., Botero Orozco, K.J., López Gartner, G.A.: Finding of a gene sequence related to the expression of a fungal immunomodulatory protein in Ganoderma australe. Revista Colombiana de Biotecnología, Universidad Nacional de Colombia 16(2), 90–95 (2014). ISSN:0123-3475Google Scholar
  18. 18.
    Sliva, D., Labarrere, C., Slivova, V., Sedlak, M., Lloyd, F.P. Jr., Ho, N.W.Y.: Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochem. Biophys. Res. Commun. 298, 603–612 (2002)Google Scholar
  19. 19.
    Yeh, C.H., et al.: Polysaccharides PS-G and protein LZ-8 from Reishi (Ganoderma lucidum) exhibit diverse functions in regulating murine macrophages and T lymphocytes. J. Agric. Food Chem. 58, 8535–8544 (2010)CrossRefGoogle Scholar
  20. 20.
    Wang, G., Zhao, J., Liu, J., Huang, Y., Zhong, J.-J., Tang, W.: Enhancement of IL-2 and IFN-γ expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo. Int. Immunopharmacol. 7, 864–870 (2007)CrossRefGoogle Scholar
  21. 21.
    Johnson, B.M., Doonan, B.P., Radwan, F.F., Haque, A.: Ganoderic acid dm: an alternative agent for the treatment of advanced prostate cancer. Open Prostate Cancer J. 3, 78–85 (2010)CrossRefGoogle Scholar
  22. 22.
    Ameri, A.: Ganoderic acid in the treatment of prostate cancer. Jundishapur J. Nat. Pharm. Prod. 7(3), 85–86 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Shang, C.H., Shi, L., Ren, A., Qin, L., Zhao, M.W.: Molecular cloning, characterization, and differential expression of a lanosterol synthase gene from Ganoderma lucidum. Biosci. Biotechnol. Biochem. 74(5), 974–978 (2010)CrossRefGoogle Scholar
  24. 24.
    De Wit, P., Pespeni, M.H., Ladner, J.T., Barshis, D.J., Seneca, F., Jaris, H., Overgaard Therkildsen, N., Morikawa, M. Palumbi, S.R.: The simple fool’s guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Germán López-Gartner
    • 1
    Email author
  • Daniel Agudelo-Valencia
    • 1
  • Sergio Castaño
    • 2
  • Gustavo A. Isaza
    • 2
  • Luis F. Castillo
    • 2
  • Mariana Sánchez
    • 1
  • Jeferson Arango
    • 2
  1. 1.Biology Sciences Department, GITIR Research GroupUniversidad de CaldasManizalesColombia
  2. 2.Systems and Informatics Department, GITIR Research GroupUniversidad de CaldasManizalesColombia

Personalised recommendations