Skip to main content

System Approximations and Generalized Measurements in Modern Sampling Theory

  • Chapter

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter studies several aspects of signal reconstruction of sampled data in spaces of bandlimited functions. In the first part, signal spaces are characterized in which the classical sampling series uniformly converge, and we investigate whether adaptive recovery algorithms can yield uniform convergence in spaces where non-adaptive sampling series does not. In particular, it is shown that the investigation of adaptive signal recovery algorithms needs completely new analytic tools since the methods used for nonadaptive reconstruction procedures, which are based on the celebrated Banach–Steinhaus theorem, are not applicable in the adaptive case.The second part analyzes the approximation of the output of stable linear time-invariant (LTI) systems based on samples of the input signal, and where the input is assumed to belong to the Paley–Wiener space of bandlimited functions with absolute integrable Fourier transform. If the samples are acquired by point evaluations of the input signal f, then there exist stable LTI systems H such that the approximation process does not converge to the desired output Hf even if the oversampling factor is arbitrarily large. If one allows generalized measurements of the input signal, then the output of every stable LTI system can be uniformly approximated in terms of generalized measurements of the input signal.The last section studies the situation where only the amplitudes of the signal samples are known. It is shown that one can find specific measurement functionals such that signal recovery of bandlimited signals from amplitude measurement is possible, with an overall sampling rate of four times the Nyquist rate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Interpolation series R N which satisfy these conditions include the so-called Valiron series [5, 37, 66] or Tschakaloff series [37, 63].

References

  1. R. Balan, P.G. Casazza, D. Edidin, On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345–356 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Balan, B.G. Bodmann, P.G. Casazza, D. Edidin, Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15(4), 488–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Banach, H. Steinhaus, Sur le principle de la condensation de singularités. Fund. Math. 9, 50–61 (1927)

    MATH  Google Scholar 

  4. I. Bar-David, An implicit sampling theorem for bounded bandlimited functions. Inf. Control 24(1), 36–44 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. R.P. Boas, Entire Functions (Academic, New York, 1954)

    MATH  Google Scholar 

  6. H. Boche, B. Farrell, Strong divergence of reconstruction procedures for the Paley-Wiener space \(\mathcal{P}\mathcal{W}_{\pi }^{1}\) and the Hardy space \(\mathcal{H}^{1}\). J. Approx. Theory 183, 98–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Boche, U.J. Mönich, There exists no globally uniformly convergent reconstruction for the Paley-Wiener space \(PW_{\pi }^{1}\) of bandlimited functions sampled at Nyquist rate. IEEE Trans. Signal Process. 56(7), 3170–3179 (2008)

    Article  MathSciNet  Google Scholar 

  8. H. Boche, U.J. Mönich, Approximation of wide-sense stationary stochastic processes by Shannon sampling series. IEEE Trans. Inf. Theory 56(12), 6459–6469 (2010)

    Article  Google Scholar 

  9. H. Boche, U.J. Mönich, Convergence behavior of non-equidistant sampling series. Signal Process. 90(1), 145–156 (2010)

    Article  MATH  Google Scholar 

  10. H. Boche, U.J. Mönich, Signal and system approximation from general measurements, in New Perspectives on Approximation and Sampling Theory: Festschrift in honor of Paul Butzer’s 85th birthday ed. by A.I. Zayed, G. Schmeisser (Applied and Numerical Harmonic Analysis) (Birkhäuser, Basel, 2014)

    Google Scholar 

  11. H. Boche, V. Pohl, On the calculation of the Hilbert transform from interpolated data. IEEE Trans. Inf. Theory 54(5), 2358–2366 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. B.G. Bodmann, N. Hammen, Stable phase retrieval with low-redundancy frames. Adv. Compt. Math. 41(2), 317–331 (2015)

    Article  MathSciNet  Google Scholar 

  13. J. Brown, On the error in reconstruction a non-bandlimited function by means of the bandpass sampling theorem. J. Math. Anal. Appl. 18, 75–84 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. P.L. Butzer, P.J.S.G. Ferreira, J.R. Higgins, S. Saitoh, G. Schmeisser, R. L. Stens, Interpolation and sampling: E.T. Whittaker, K. Ogura and their Followers. J. Fourier Anal. Appl. 17(2), 320–354 (2011)

    Google Scholar 

  15. P.L. Butzer, M.M. Dodson, P.J.S.G. Ferreira, J.R. Higgins, O. Lange, P. Seidler, R.L. Stens, Multiplex signal transmission and the development of sampling techniques: the work of Herbert Raabe in contrast to that of Claude Shannon. Appl. Anal. 90(3–4), 643–688 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. P.L. Butzer, R.L. Stens, Sampling theory for not necessarily band-limited functions: a historical overview. SIAM Rev. 34(1), 40–53 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. P.L. Butzer, W. Splettstsser, R.L. Stens, The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch. Math.-Verein. 90(1), 1–70 (1988)

    MATH  Google Scholar 

  18. P.L. Butzer, G. Schmeisser, R.L. Stens, Shannon’s sampling theorem for bandlimited signals and their Hilbert transform, boas-type formulae for higher order derivatives - the aliasing error involved by their extensions from bandlimited to non-bandlimited signals. Entropy 14(11), 2192–2226 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. L.L. Campbell, Sampling theorem for the Fourier transform of a distribution with bounded support. SIAM J. Appl. Math. 16(3), 626–636 (1968)

    Article  MathSciNet  Google Scholar 

  20. E.J. Candès, Y.C. Eldar, T. Strohmer, V. Voroninski, Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6(1), 199–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. E.J. Candès, T. Strohmer, V. Voroninski, Phase lift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Article  MATH  Google Scholar 

  22. O. Christensen, An Introduction to Frames and Riesz Bases (Birkhäuser, Bosten, 2003)

    Book  MATH  Google Scholar 

  23. W. Dickmeis, R.J. Nessel, A quantitative condensation of singularities on arbitrary sets. J. Approx. Theory 43(4), 383–393 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Dickmeis, R.J. Nessel, E. van Wickeren, A quantitative condensation of singularities on arbitrary sets. Manuscripta Math. 52, 1–20 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y.C. Eldar, T. Michaeli, Beyond bandlimited sampling: nonlinearities, smoothness and sparsity. IEEE Signal Process. Mag. 26(3), 48–68 (2009)

    Article  MathSciNet  Google Scholar 

  26. Y.C. Eldar, V. Pohl, Recovering signals from lowpass data. IEEE Trans. Signal Process. 58(5), 2636–2646 (2010)

    Article  MathSciNet  Google Scholar 

  27. P. Erdős, On divergence properties of the Lagrange interpolation parabolas. Ann. Math. 42(1), 309–315 (1941)

    Article  Google Scholar 

  28. P. Erdős, Corrections to two of my papers. Ann. Math. 44(4), 647–651 (1943)

    Article  Google Scholar 

  29. P.J.S.G Ferreira, Nonuniform sampling of nonbandlimited signals. IEEE Signal Process. Lett. 2(5), 89–91 (1995)

    Google Scholar 

  30. R.P. Feynman, Feynman Lectures on Computation (Addison-Wesley, Reading, 1996)

    Google Scholar 

  31. J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)

    Article  Google Scholar 

  32. J.R. Fienup, J.C. Marron, T.J. Schulz, J.H. Seldin, Hubble space telescope characterized by using phase-retrieval algorithms. Appl. Opt. 32(10), 1747–1767 (1993)

    Article  Google Scholar 

  33. N.J. Fine, On the walsh functions. Trans. Am. Math. Soc. 65(3), 372–414 (1949)

    Article  MATH  Google Scholar 

  34. J. Finkelstein, Pure-state informationally complete and “really” complete measurements. Phys. Rev. A 70, 052107 (2004)

    Article  MathSciNet  Google Scholar 

  35. D. Gabor, Theory of communication. J. IEE 93(26), 429–441 (1946)

    Google Scholar 

  36. G.H. Hardy, Notes on special systems of orthogonal functions (IV): the orthogonal functions of Whittaker’s cardinal series. Math. Proc. Cambridge Philos. Soc. 37(4), 331–348 (1941)

    Article  Google Scholar 

  37. J.R. Higgins, Five short stories about the cardinal series. Bull. Am. Math. Soc. 12(1), 45–89 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.R. Higgins, Sampling Theory in Fourier and Signal Analysis – Foundations (Clarendon Press, Oxford, 1996)

    MATH  Google Scholar 

  39. L. Hörmander, Linear Partial Differential Operators (Springer, Berlin, 1976)

    MATH  Google Scholar 

  40. P. Jaming, Phase retrieval techniques for radar ambiguity problems. J. Fourier Anal. Appl. 5(4), 309–329 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. A.J. Jerri, The Shannon sampling theorem–its various extensions and applications: a tutorial review. Proc. IEEE 65(11), 1565–1596 (1977)

    Article  MATH  Google Scholar 

  42. L.V. Kantorovich, G.P. Akilov, Functional Analysis in Normed Spaces (Pergamon Press, New York, 1964)

    MATH  Google Scholar 

  43. B.Y. Levin, Lectures on Entire Functions (American Mathematical Society, Providence, 1997)

    MATH  Google Scholar 

  44. B.Y. Levin, I.V. Ostrovskii, Small perturbations of the set of roots of sine-type functions. Izv. Akad. Nauk SSSR Ser. Mat 43(1), 87–110 (1979)

    MathSciNet  Google Scholar 

  45. J. Miao, T. Ishikawa, Q. Shen, T. Earnest, Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu. Rev. Phys. Chem. 59, 387–410 (2008)

    Article  Google Scholar 

  46. R.P. Millane, Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7(3), 394–411 (1990)

    Article  Google Scholar 

  47. A.M. Minkin, The reflection of indices and unconditional bases of exponentials. St. Petersburg Math. J. 3(5), 1043–1064 (1992)

    MathSciNet  Google Scholar 

  48. U.J. Mönich, H. Boche, Non-equidistant sampling for bounded bandlimited signals. Signal Process. 90(7), 2212–2218 (2010)

    Article  MATH  Google Scholar 

  49. N.K. Nikol’skii, Bases of exponentials and the values of reproducing kernels. Dokl. Akad. Nauk SSSR 252, 1316–1320 (1980) [English translation, Sov. Math. Dokl. 21, 937–941 (1980)]

    Google Scholar 

  50. A.M. Olevskii, On an orthonormal system and its applications. Mat. Sb. (N.S.) 71(113)(3), 297–336 (1966)

    Google Scholar 

  51. B.S. Pavlov, Basicity of an exponential system and Muckenhoupt’s condition. Dokl. Akad. Nauk SSSR 247, 37–40 (1979) [English translation, Sov. Math. Dokl. 20 655–659 (1979)]

    Google Scholar 

  52. E. Pfaffelhuber, Sampling series for band-limited generalized functions. IEEE Trans. Inf. Theory 17(6), 650–654 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  53. K. Piwnicki, Modulation methods related to sine-wave crossings. IEEE Trans. Commun. 31(4), 503–508 (1983)

    Article  MATH  Google Scholar 

  54. V. Pohl, H. Boche, Advanced topics in system and signal theory: a mathematical approach, in Foundations in Signal Processing. Communications and Networking, vol. 4 (Springer, Berlin, 2009)

    Google Scholar 

  55. V. Pohl, F. Yang, H. Boche, Phase retrieval from low-rate samples. Sampling Theory Signal Image Process. 14(1), 71–99 (2015)

    MathSciNet  Google Scholar 

  56. V. Pohl, F. Yang, H. Boche, Phaseless signal recovery in infinite dimensional spaces using structured modulations. J. Fourier Anal. Appl. 20(6), 1212–1233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. W. Rudin, Real and Complex Analysis, 3rd edn. (McGraw-Hill, Boston, 1987)

    MATH  Google Scholar 

  58. W. Rudin, Functional Analysis, 2nd edn. (McGraw-Hill, Boston, 1991)

    MATH  Google Scholar 

  59. K. Seip, Interpolation and Sampling in Spaces of Analytic Functions (American Mathematical Society, Providence, 2004)

    Book  MATH  Google Scholar 

  60. C.E. Shannon, Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  61. E.M. Stein, On limits of sequences of operators. Ann. Math. (2) 74(1), 140–170 (1961)

    Google Scholar 

  62. G. Thakur, Reconstruction of bandlimited functions from unsigned samples. J. Fourier Anal. Appl. 17(4), 720–732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. L. Tschakaloff, Zweite Lösung der Aufgabe 105. Jahresber. Deutsch. Math.-Verein. 43, 11–13 (1934)

    Google Scholar 

  64. M. Unser, Sampling–50 Years after Shannon. Proc. IEEE 88(4), 569–587 (2000)

    Article  Google Scholar 

  65. D.Ye. Vakman, On the definition of concepts of amplitude, phase and instantaneous frequency of a signal. Radio Eng. Electron. Phys. 17(5), 754–759 (1972)

    Google Scholar 

  66. G. Valiron, Sur la formule d’interpolation de Lagrange. Bull. Sci. Math. 49(2), 181–192 (1925)

    MATH  Google Scholar 

  67. J.L. Walsh, A closed set of normal orthogonal functions. Am. J. Math. 45(1), 5–24 (1923)

    Article  MATH  Google Scholar 

  68. G. Wunder, R.F.H. Fischer, H. Boche, S. Litsyn, J.-S. No, The PAPR problem in OFDM transmission. IEEE Signal Process. Mag. 30(6), 130–144 (2013)

    Article  Google Scholar 

  69. F. Yang, V. Pohl, H. Boche, Phase retrieval via structured modulations in Paley-Wiener spaces, in Proceedings of 10th International Conference on Sampling Theory and Applications (SampTA), July 2013

    Google Scholar 

  70. R.M. Young, An Introduction to Nonharmonic Fourier Series (Academic, New York, 1980)

    MATH  Google Scholar 

  71. M. Zakai, Band-limited functions and the sampling theorem. Inf. Control 8(2), 143–158 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  72. G. Zauner, Quantum designs: foundations of a noncommutative design theory. Int. J. Quantum Inf. 9(1), 445–507 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  73. A.I. Zayed, Advances in Shannon’s Sampling Theory (CRC Press, Boca Raton, 1993)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Joachim Hagenauer and Sergio Verdú for drawing our attention to [15] and for related discussions and Ullrich Mönich for carefully reading the manuscript and for helpful comments. The first author thanks the referees of the German Research Foundation (DFG) grant BO 1734/13-2 for highlighting the importance of understanding the strong divergence behavior addressed in Section 7.4.2 of this chapter. He also likes to thank Rudolf Mathar for his insistence in several conversations on the significance of these questions.

The authors gratefully acknowledge support by the DFG through grants BO 1734/22-1 and PO 1347/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Boche .

Editor information

Editors and Affiliations

Appendix

Appendix

This appendix provides a short proof of Theorem 8 in Section 7.4.2

Proof (Theorem 8).

  1. 1.

    First, we prove the statement for the sets (7.18). To this end, let \(g \in \mathcal{X}\) and ε > 0 be arbitrary. For all \(M,N_{0} \in \mathbb{N}\), we have to show that there exists a functions f in the set (7.18) such that \(\|g - f_{{\ast}}\|_{\mathcal{X}} <\epsilon\). Since \(\mathcal{X}_{0}\) is a dense subset of \(\mathcal{X}\), there exists a \(q \in \mathcal{X}_{0}\) such that \(\|g - q\|_{\mathcal{X}} <\epsilon /2\). Therewith, we define \(f_{{\ast}}:= q + \tfrac{\epsilon } {2}\,f_{0}\) with \(f_{0} \in \mathcal{D}_{weak}\) and with \(\|f_{0}\|_{\mathcal{X}} = 1\). Then we get

    $$\displaystyle{ \|g - f_{{\ast}}\|_{\mathcal{X}}\leq \| g - q\|_{\mathcal{X}} + \tfrac{\epsilon } {2}\|f_{0}\|_{\mathcal{X}} <\tfrac{\epsilon } {2} + \tfrac{\epsilon } {2} =\epsilon \;. }$$

    Let \(M,N_{0} \in \mathbb{N}\) be arbitrary. We still have to show that f is contained in set (7.18). To this end, we observe that for every \(N \in \mathbb{N}\)

    $$\displaystyle{ \|\mathrm{T}_{N}f_{{\ast}}\|_{\mathcal{Y}} =\|\mathrm{ T}_{N}q + \tfrac{\epsilon } {2}\mathrm{T}_{N}f_{0}\|_{\mathcal{Y}}\geq \tfrac{\epsilon } {2}\|\mathrm{T}_{N}f_{0}\|_{\mathcal{Y}}-\|\mathrm{ T}_{N}q\|_{\mathcal{Y}}\;. }$$

    Since \(q \in \mathcal{X}_{0}\), (7.16) implies that there is an \(N_{1} \geq N_{0}\) such that \(1 \geq \|\mathrm{ T}_{N}q - q\|_{\mathcal{Y}}\geq \|\mathrm{ T}_{N}q\|_{\mathcal{Y}}-\| q\|_{\mathcal{Y}}\) for all N ≥ N 1. Consequently

    $$\displaystyle{ \|\mathrm{T}_{N}q\|_{\mathcal{Y}}\leq 1 +\| q\|_{\mathcal{Y}}\leq 1 + C_{0}\|q\|_{\mathcal{X}}\quad \mathit{for\ \ all}\ N \geq N_{1}\;, }$$

    using for the last inequality that \(\mathcal{X}\) is continuously embedded in \(\mathcal{Y}\) with a certain constant \(C_{0} <\infty\). Combining the last two inequalities, we get \(\|\mathrm{T}_{N}f_{{\ast}}\|_{\mathcal{Y}}\geq \tfrac{\epsilon } {2}\|\mathrm{T}_{N}f_{0}\|_{\mathcal{Y}}- 1 - C_{0}\|q\|_{\mathcal{X}}\) for all N ≥ N 1. Since \(f_{0} \in \mathcal{D}_{\mathrm{weak}}\) there exits an \(N_{2} \geq N_{1}\) such that

    $$\displaystyle{ \|\mathrm{T}_{N_{2}}f_{{\ast}}\|_{\mathcal{Y}}\geq \tfrac{\epsilon } {2}\|\mathrm{T}_{N_{2}}f_{0}\| - 1 - C_{0}\|q\|_{\mathcal{X}}> M }$$

    which shows that \(f_{{\ast}}\in D(M,N_{2}) \subset \bigcup _{N\geq N_{0}}D(M,N)\). Thus the sets (7.18) are dense in \(\mathcal{X}\) and it remains to show that these sets are open. To this end, let \(M,N \in \mathbb{N}\) and f  ∈ D(M, N) be arbitrary, i.e., \(\|\mathrm{T}_{N}f_{{\ast}}\|_{\mathcal{Y}}> M\). Since T N is a continuous linear operator \(\mathcal{X} \rightarrow \mathcal{Y}\), there exists a δ > 0 and a neighborhood

    $$\displaystyle{ U_{\delta }(f_{{\ast}}) =\{ f \in \mathcal{X}:\| f - f_{{\ast}}\|_{\mathcal{X}} <\delta \} }$$

    of f such that \(\|\mathrm{T}_{N}f\|_{\mathcal{Y}}> M\) for all f ∈ U δ . Thus D(M, N) is open for all \(M,N \in \mathbb{N}\) and since the union of (countable many) open sets is again open, the sets (7.18) are also open.

  2. 2.

    We prove (7.19). By the definition of the \(\limsup\) operation, the set \(\mathcal{D}_{\mathrm{weak}}\) can be written as

    $$\displaystyle{ \mathcal{D}_{\mathrm{weak}} =\Big\{ f \in \mathcal{X}\:\ \lim _{N_{0}\rightarrow \infty }\sup _{N\geq N_{0}}\|\mathrm{T}_{N}f\|_{\mathcal{Y}} = \infty \Big\} }$$

    and we note that for every fixed \(f \in \mathcal{X}\) the sequence \(\{\sup _{N\geq N_{0}}\|\mathrm{T}_{N}f\|_{\mathcal{Y}}\}_{N_{0}=1}^{\infty }\) is monotone decreasing. Assume that \(f \in \mathcal{D}_{\mathrm{weak}}\) and choose \(M \in \mathbb{N}\) arbitrary. Then, by the above definition of \(\mathcal{D}_{\mathrm{weak}}\), it follows that for arbitrary N 0 there exists an N ≥ N 0 such that \(\|\mathrm{T}_{N}f\|_{\mathcal{Y}}> M\), i.e., \(f \in \bigcup _{N\geq N_{0}}D(M,N)\), and since this holds for all \(M,N \in \mathbb{N}\) we have

    $$\displaystyle{ f \in \bigcap _{M=1}^{\infty }\ \bigcap _{ N_{0}=1}^{\infty }\ \bigcup _{ N=N_{0}}^{\infty }\ D(M,N) }$$

    which shows that \(\mathcal{D}_{\mathrm{weak}} \subset \bigcap _{M=1}^{\infty }\ \bigcap _{N_{0}=1}^{\infty }\ \bigcup _{N=N_{0}}^{\infty }\ D(M,N)\). Conversely, assume that \(f \in \bigcap _{M=1}^{\infty }\ \bigcap _{N_{0}=1}^{\infty }\ \bigcup _{N=N_{0}}^{\infty }\ D(M,N)\). Then to every arbitrary \(M \in \mathbb{N}\) and \(N_{0} \in \mathbb{N}\) there exists an N > N 0 such that f ∈ D(M, N), i.e., that \(\|\mathrm{T}_{N}f\|_{\mathcal{Y}}> M\). Thus \(f \in \mathcal{D}_{\mathrm{weak}}\).

    Finally, we prove (7.20). Assume first that \(f \in \mathcal{D}_{\mathrm{strong}}\). Then to every \(M \in \mathbb{N}\) there exists an N 0 = N 0(M) such that \(\|\mathrm{T}_{N}f\|_{\mathcal{Y}}> M\) for all N ≥ N 0. In other words

    $$\displaystyle{ f \in \bigcap _{N=N_{0}(M)}^{\infty }D(M,N) \subset \bigcup _{ N_{0}=1}^{\infty }\bigcap _{ N=N_{0}}^{\infty }D(M,N)\qquad \text{for every}\ M \in \mathbb{N}\;, }$$

    which shows that \(f \in \bigcap _{M=1}^{\infty }\ \bigcup _{N_{0}=1}^{\infty }\ \bigcap _{N=N_{0}}^{\infty }\ D(M,N)\). Conversely, assume that \(f \in \bigcap _{M=1}^{\infty }\ \bigcup _{N_{0}=1}^{\infty }\ \bigcap _{N=N_{0}}^{\infty }\ D(M,N)\). This means that for any arbitrary \(M \in \mathbb{N}\) the function f belongs to \(\bigcup _{N_{0}=1}^{\infty }\ \bigcap _{N=N_{0}}^{\infty }\ D(M,N)\), i.e., there exists an N 0 such that

    $$\displaystyle{ f \in \bigcap _{N=N_{0}}^{\infty }D(M,N),\qquad \text{i.e.,}\qquad \|\mathrm{T}_{ N}f\|_{\mathcal{Y}}> M\quad \mathrm{for\ \,all}\ N \geq N_{0}\;. }$$

    Thus \(\lim _{N\rightarrow \infty }\|\mathrm{T}_{N}f\|_{\mathcal{Y}} = \infty\), i.e., \(f \in \mathcal{D}_{\mathrm{strong}}\). □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boche, H., Pohl, V. (2015). System Approximations and Generalized Measurements in Modern Sampling Theory. In: Pfander, G. (eds) Sampling Theory, a Renaissance. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-19749-4_7

Download citation

Publish with us

Policies and ethics