Skip to main content

OperA: Operator-Based Annihilation for Finite-Rate-of-Innovation Signal Sampling

  • Chapter
Sampling Theory, a Renaissance

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We consider the problem of finite-rate-of-innovation (FRI) signal sampling, which received a lot of attention from the sampling community in the past decade. Specifically, we consider the mechanism of reconstruction based on the notion of annihilation and show that one can design annihilators based on linear differential operators and translation operators. By working in the continuous domain, we show that annihilation can be achieved on nonuniform grids using derivative-type sampling approaches and on interleaved sampling grids using translation-operator-based annihilators. The standard annihilation procedure operating in the discrete domain becomes a special case of this approach. We show perfect reconstruction results with the sampling approaches considered and present simulation results to support the theoretical calculations. We also establish a link between annihilation and exponential-spline construction. Monte Carlo performance analysis in the presence of noise shows that annihilation on interleaved sampling grids leads to more noise-robust estimates than annihilation on uniform sampling grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    Google Scholar 

  2. A.J. Jerri, The Shannon sampling theorem - its various extensions and applications: a tutorial review. Proc. IEEE 65(11), 1565–1596 (1977)

    Google Scholar 

  3. M. Unser, Sampling-50 years after Shannon. Proc. IEEE 88(4), 569–587 (2000)

    Google Scholar 

  4. A. Papoulis, Generalized sampling expansion. IEEE Trans. Circuits Syst. 24, 652–654 (1977)

    Google Scholar 

  5. M. Unser, J. Zerubia, A generalized sampling theory without band-limiting constraints. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45(8), 959–969 (1998)

    Google Scholar 

  6. M. Unser, A. Aldroubi, M. Eden, B-spline signal processing. I - theory. IEEE Trans. Signal Process. 41(2), 821–833 (1993)

    Google Scholar 

  7. M. Unser, A. Aldroubi, M. Eden, B-spline signal processing. II - efficient design and applications. IEEE Trans. Signal Process. 41(2), 834–848 (1993)

    Google Scholar 

  8. M. Unser, Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. 16(6), 22–38 (1999)

    Google Scholar 

  9. M. Unser, T. Blu, Cardinal exponential splines: Part I - theory and filtering algorithms. IEEE Trans. Signal Process. 53(4), 1425–1438 (2005)

    Google Scholar 

  10. M. Unser, Cardinal exponential splines: Part II - think analog, act digital. IEEE Trans. Signal Process. 53(4), 1439–1449 (2005)

    Article  MathSciNet  Google Scholar 

  11. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Google Scholar 

  12. D.L. Donoho, For most large underdetermined systems of linear equations the minimal ℓ 1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

    Google Scholar 

  13. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Google Scholar 

  14. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Google Scholar 

  15. E.J. Candès, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Google Scholar 

  16. M. Vetterli, P. Marziliano, T. Blu, Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417–1428 (2002)

    Google Scholar 

  17. J. Berent, P.L. Dragotti, T. Blu, Sampling piecewise sinusoidal signals with finite rate of innovation methods. IEEE Trans. Signal Process. 58(2), 613–625 (2010)

    Google Scholar 

  18. J. Kusuma, V.K. Goyal, On the accuracy and resolution of powersum-based sampling methods. IEEE Trans. Signal Process. 57(1), 182–193 (2009)

    Google Scholar 

  19. R. Tur, Y.C. Eldar, Z. Friedman, Innovation rate sampling of pulse streams with application to ultrasound imaging. IEEE Trans. Signal Process. 59(4), 1827–1842 (2011)

    Google Scholar 

  20. P.L. Dragotti, M. Vetterli, T. Blu, Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix. IEEE Trans. Signal Process. 55(5), 1741–1757 (2007)

    Google Scholar 

  21. C.S. Seelamantula, M. Unser, A generalized sampling method for finite-rate-of-innovation-signal reconstruction. IEEE Signal Process. Lett. 813–816 (2008)

    Google Scholar 

  22. H. Olkkonen, J.T. Olkkonen, Measurement and reconstruction of impulse train by parallel exponential filters. IEEE Signal Process. Lett. 15, 241–244 (2008)

    Google Scholar 

  23. G.R. DeProny, Essai experimental et analytique: sur les lois de la dilatabilité de fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alcool, à différentes températures. J. de l’Ecole Polytechnique 1(2), 24–76 (1795)

    Google Scholar 

  24. R.O. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Google Scholar 

  25. A. Paulraj, R. Roy, T. Kailath, A subspace rotation approach to signal parameter estimation. Proc. IEEE 74(7), 1044–1046 (1986)

    Google Scholar 

  26. D.W. Tufts, R. Kumaresan, Estimation of frequencies of multiple sinusoids: making linear prediction perform like maximum likelihood. Proc. IEEE 70(9), 975–989 (1982)

    Google Scholar 

  27. P. Stoica, R.L. Moses, Introduction to Spectral Analysis (Prentice Hall, Upper Saddle River, 1997)

    MATH  Google Scholar 

  28. S.M. Kay, Modern Spectral Estimation—Theory and Application (Prentice Hall, Englewood Cliffs, 1988)

    MATH  Google Scholar 

  29. J.A. Uriguen, T. Blu, P.L. Dragotti, FRI sampling with arbitrary kernels. IEEE Trans. Signal Process. 61(21), 5310–5323 (2013)

    Google Scholar 

  30. S. Mulleti, S. Nagesh, R. Langoju, A. Patil, C.S. Seelamantula, Ultrasound image reconstruction using the finite-rate-of-innovation principles, in Proceedings of the IEEE International Conference on Image Processing (ICIP), October 2014

    Google Scholar 

  31. T. Blu, H. Bay, M. Unser, A new high-resolution processing method for the deconvolution of optical coherence tomography signals, in Proceedings of the First IEEE International Symposium on Biomedical Imaging: Macro to Nano (ISBI ’02), vol. III, 7–10 July 2002, pp. 777–780

    Google Scholar 

  32. C.S. Seelamantula, S. Mulleti, Super-resolution reconstruction in frequency-domain optical-coherence tomography using the finite-rate-of-innovation principle. IEEE Trans. Signal Process. 62(19), 5020–5029 (2014)

    Google Scholar 

  33. C. Vonesch, T. Blu, M. Unser, Generalized Daubechies wavelet families. IEEE Trans. Signal Process. 55(9), 4415–4429 (2007)

    Google Scholar 

  34. A. Nathan, On sampling a function and its derivatives. Inf. Control 22(2), 172–182 (1973)

    Google Scholar 

  35. Y.P. Lin, P.P. Vaidyanathan, Periodically nonuniform sampling of bandpass signals. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45(3), 340–351 (1998)

    Google Scholar 

  36. B. Lacaze, Equivalent circuits for the PNS2 sampling scheme. IEEE Trans. Circuits Syst. I Regul. Pap. 57(11), 2904–2914 (2010)

    Google Scholar 

  37. K.F. Cheung, R.J. Marks, Imaging sampling below the Nyquist density without aliasing. J. Opt. Soc. Am. A 7(1), 92–105 (1990)

    Google Scholar 

  38. P.P. Vaidyanathan, V.C. Liu, Efficient reconstruction of band-limited sequences from nonuniformly decimated versions by use of polyphase filter banks. IEEE Trans. Acoust. Speech Signal Process. 38(11), 1927–1936 (1990)

    Google Scholar 

  39. B. Foster, C. Herley, Exact reconstruction from periodic nonuniform samples, in Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, May 1995, pp. 1452–1455

    Google Scholar 

  40. P. Feng, Y. Bresler, Spectrum-blind minimum-rate sampling and reconstruction of multiband signals, in Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, May 1996, pp. 1688–1691

    Google Scholar 

  41. H.J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117(1), 37–52 (1967)

    Google Scholar 

  42. R. Venkataramani, Y. Bresler, Perfect reconstruction formulas and bounds on aliasing error in sub-Nyquist nonuniform sampling of multiband signals. IEEE Trans. Inf. Theory 46(6), 2173–2183 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Venkataramani, Y. Bresler, Optimal sub-Nyquist nonuniform sampling and reconstruction for multiband signals. IEEE Trans. Signal Process. 49(10), 2301–2313 (2001)

    Article  Google Scholar 

  44. M. Mishali, Y.C. Eldar, From theory to practice: sub-Nyquist sampling of sparse wideband analog signals. IEEE J. Sel. Topics Signal Process. 4(2), 375–391 (2010)

    Google Scholar 

  45. H. Akhtar, R. Kakarala, A methodology for evaluating accuracy of capacitive touch sensing grid patterns. J. Disp. Technol. 10(8), 672–682 (2014)

    Article  Google Scholar 

  46. J.A. Cadzow, Signal enhancement—a composite property mapping algorithm. IEEE Trans. Acoust. Speech Signal Process. 36, 49–62 (1988)

    Google Scholar 

  47. T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano, L. Coulot, Sparse sampling of signal innovations. IEEE Signal Process. Mag. 25(2), 31–40 (2008)

    Google Scholar 

Download references

Acknowledgements

I would like to thank my Ph.D. student Satish Mulleti for technical discussions and for generating the Monte Carlo simulation results reported in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Sekhar Seelamantula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seelamantula, C.S. (2015). OperA: Operator-Based Annihilation for Finite-Rate-of-Innovation Signal Sampling. In: Pfander, G. (eds) Sampling Theory, a Renaissance. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-19749-4_13

Download citation

Publish with us

Policies and ethics