Non-conventional Digital Signatures and Their Implementations—A Review

  • David Arroyo
  • Jesus Diaz
  • Francisco B. Rodriguez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 369)


The current technological scenario determines a profileration of trust domains, which are usually defined by validating the digital identity linked to each user. This validation entails critical assumptions about the way users’ privacy is handled, and this calls for new methods to construct and treat digital identities. Considering cryptography, identity management has been constructed and managed through conventional digital signatures. Nowadays, new types of digital signatures are required, and this transition should be guided by rigorous evaluation of the theoretical basis, but also by the selection of properly verified software means. This latter point is the core of this paper. We analyse the main non-conventional digital signatures that could endorse an adequate tradeoff between security and privacy. This discussion is focused on practical software solutions that are already implemented and available online. The goal is to help security system designers to discern identity management functionalities through standard cryptographic software libraries.


  1. 1.
    Abe, M., Fujisaki, E.: How to date blind signatures. In: ASIACRYPT (1996)Google Scholar
  2. 2.
    Abusharekh, A.: Comparative analysis of software libraries for public key cryptographyGoogle Scholar
  3. 3.
    Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M., Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryptographic Eng. 3(2), 111–128 (2013)CrossRefGoogle Scholar
  4. 4.
    Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Anonymity 2.0 – X.509 extensions supporting privacy-friendly authentication. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 265–281. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Fair traceable multi-group signatures. In: Financial Cryptography, pp. 231–246 (2008)Google Scholar
  7. 7.
    Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Boneh, D., Boyen, X., Shacham, H,: Short group signatures. In: Franklin, M, (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Brands, S.: Untraceable off-line cash in wallets with observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, CCS 2004, pp. 132–145. Washington, DC, USA, 25–29 Oct 2004Google Scholar
  11. 11.
    Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical aspects. In: 4th International Conference Security in Communication Networks 2004, Italy, Sept 8–10, 2004, Revised Selected Papers. pp. 120–133 (2004)Google Scholar
  12. 12.
    Cao, Z., Liu, M.: Classification of signature-only signature models. Sci. China Ser. F: Inform. Sci. 51(8), 1083–1095 (2008)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO (1982)Google Scholar
  15. 15.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  16. 16.
    Choi, S.G., Park, K., Yung, M.: Short traceable signatures based on bilinear pairings. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 88–103. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Chow, S.S.M., Yiu, S.-M., Hui, L.C.K.: Efficient identity based ring signature. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 499–512. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Desmedt, Y.G., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992)Google Scholar
  19. 19.
    Diaz, J., Arroyo, D., Rodriguez, F.B.: A formal methodology for integral security design and verification of network protocols. J. Syst. Softw. 89, 87–98 (2014)CrossRefGoogle Scholar
  20. 20.
    Diaz, J., Arroyo, D., Rodriguez, F.B.: New x.509-based mechanisms for fair anonymity management. Comput. Secur. 46, 111–125 (2014)CrossRefGoogle Scholar
  21. 21.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  22. 22.
    Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 95(1), 151–166 (2012)CrossRefGoogle Scholar
  23. 23.
    Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Public Key Cryptography—PKC 2007, Proceedings of the 10th International Conference on Practice and Theory in Public-Key Cryptography, pp. 181–200. China, 16–20 April 2007Google Scholar
  24. 24.
    Harn, L., Ren, J., Lin, C.: Efficient identity-based GQ multisignatures. Int. J. Inf. Sec. 8(3), 205–210 (2009)CrossRefGoogle Scholar
  25. 25.
    Hohenberger, S.: Advances in Signatures, Encryption, and E-Cash from Bilinear Groups. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science (2006)Google Scholar
  26. 26.
    ISO 148888–2: Information technology—Security techniques—Digital signatures with appendix—Part 2: Integer factorization based mechanisms (2014)Google Scholar
  27. 27.
    ISO/IEC 18370–1: Information technology—Security techniques—Blind digital signatures—Part 1: General (2015)Google Scholar
  28. 28.
    ISO/IEC 18370–2: Information technology—Security techniques—Blind digital signatures—Part 2: Discrete logarithm based mechanisms (2014)Google Scholar
  29. 29.
    ISO/IEC 20008–1: Information technology—Security techniques—Anonymous digital signatures—Part 1: General (2013)Google Scholar
  30. 30.
    ISO/IEC 20008–2: Information technology—Security techniques—Anonymous digital signatures—Part 2: Mechanisms using a group public key (2013)Google Scholar
  31. 31.
    Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisignatures. NEC J. Res. Dev. (1983)Google Scholar
  32. 32.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski, B.S., Jr (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  33. 33.
    Katz, J.: Digital Signatures. Advances in Information Security. Springer, US (2010)Google Scholar
  34. 34.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)Google Scholar
  35. 35.
    Kucharczyk, M.: Blind signatures in electronic voting systems. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 349–358. Springer, Heidelberg (2010)Google Scholar
  36. 36.
    Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups. In: Information Security and Privacy. Springer (2004)Google Scholar
  37. 37.
    Liu, J.K., Wong, D.S.: Linkable ring signatures: security models and new schemes. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 614–623. Springer, Heidelberg (2005)Google Scholar
  38. 38.
    Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: a scalable solution to electronic cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998)Google Scholar
  39. 39.
    Maheswaran, J., Wolinsky, D.I., Ford, B.: Crypto-book: an architecture for privacy preserving online identities. In: Twelfth ACM Workshop on Hot Topics in Networks, HotNets-XII, p. 14. College Park, MD, USA, 21–22 Nov 2013Google Scholar
  40. 40.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: CCS ’96, Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp. 48–57. India, 14–16 March 1996Google Scholar
  41. 41.
    Paterson, K.G., Schuldt, J.C.N.: Efficient identity-based signatures secure in the standard model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 207–222. Springer, Heidelberg (2006)Google Scholar
  42. 42.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)Google Scholar
  43. 43.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)Google Scholar
  44. 44.
    Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)Google Scholar
  45. 45.
    Stadler, M.A., Piveteau, J.-M., Camenisch, J.L.: Fair blind signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 209–219. Springer, Heidelberg (1995)Google Scholar
  46. 46.
    Tang, S., Xu, L.: Proxy signature scheme based on isomorphisms of polynomials. In: Xu, L., Bertino, E., Mu, Y. (eds.) NSS 2012. LNCS, vol. 7645, pp. 113–125. Springer, Heidelberg (2012)Google Scholar
  47. 47.
    Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005)Google Scholar
  48. 48.
    Yuen, T.H., Susilo, W., Mu, Y.: How to construct identity-based signatures without the key escrow problem. Int. J. Inf. Sec. 9(4), 297–311 (2010)CrossRefGoogle Scholar
  49. 49.
    Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • David Arroyo
    • 1
  • Jesus Diaz
    • 1
  • Francisco B. Rodriguez
    • 1
  1. 1.Grupo de Neurocomputacion Biologica, Departamento de Ingenieria Informatica, Escuela Politecnica SuperiorUniversidad Autonoma de MadridMadridSpain

Personalised recommendations