Asymmetric Uncertainty of Mortality and Longevity in the Spanish Population

  • Jorge M. UribeEmail author
  • Helena Chuliá
  • Montserrat Guillén
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 377)


Using data of specific mortality rates, discriminating between males and females, we estimate mortality and longevity risks for Spain in a period spanning from 1950 to 2012. We employ Dynamic Factor Models, fitted over the differences of the log-mortality rates to forecast mortality rates and we model the short-run dependence relationship in the data set by means of pair-copula constructions. We also compare the forecasting performance of our model with other alternatives in the literature, such as the well-known Lee-Carter Model. Finally, we provide estimations of risk measures such as VaR and Conditional-VaR for different hypothetical populations, which could be of great importance to assess the uncertainty faced by firms such as pension funds or insurance companies, operating in Spain. Our results indicate that mortality and longevity risks are asymmetric, especially in aged populations of males.


Longevity risk Mortality risk Dynamic factor models Copulas 


  1. Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insur. Math. Econ. 44, 182–198 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  2. Alonso, A.M.: Predicción de tablas de mortalidad dinámicas mediante un procedimiento bootstrapp. Fundación MAPFRE, Madrid (2008)Google Scholar
  3. Bai, J., Ng, S.: Determining the number of factors in approximate factor models. Econometrica 70, 191–221 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. Bai, J., Ng, S.: A panic attack on unit roots and cointegration. Econometrica 72, 1127–1177 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  5. Bai, J., Ng, S.: Determining the number of primitive shocks in factor models. J. Bus. Econ. Stat. 25, 52–60 (2007)MathSciNetCrossRefGoogle Scholar
  6. Bai, J., Ng, S.: Large dimensional factor analysis. Found. Trends. Econometr. 3, 89–163 (2008)CrossRefGoogle Scholar
  7. Brouhns, N., Denuit, M.: Risque de longévité et rentes viagères II. Tables de mortalité prospectives pour la population belge. Belgian Actuarial Bull. 2, 49–63 (2002)Google Scholar
  8. Cairns, A., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Khalaf-Allah, M.: Mortality density forecasts: An analysis of six stochastic mortality models. Insur. Math. Econ. 48, 355–367 (2011)MathSciNetCrossRefGoogle Scholar
  9. Continuous Mortality Investigation: Projecting future mortality: A discussion paper. Working Paper 3. Institute and Faculty of Actuaries, UK (2004)Google Scholar
  10. Continuous Mortality Investigation: Projecting future mortality: Towards a proposal for a stochastic methodology. Working Paper 15. Institute and Faculty of Actuaries, UK (2005)Google Scholar
  11. Continuous Mortality Investigation: The CMI mortality projections model. Working Paper 63. Institute and Faculty of Actuaries, UK(2013)Google Scholar
  12. Dushi, I., Friedberg, L., Webb, T.: The impact of aggregate mortality risk on defined benefit pension plans. J. Pension Econ. Fin. 9, 481–503 (2010)CrossRefGoogle Scholar
  13. Forni, M., Hallin, M., Lippi, M., Reichlin, L.: The generalized dynamic-factor model: Identification and estimation. Rev. Econ. Stat. 82, 540–554 (2000)CrossRefGoogle Scholar
  14. Forni, M., Hallin, M., Lippi, M., Reichlin, L.: The generalized dynamic factor model: One-sided estimation and forecasting. J. Am. Stat. Assoc. 100, 830–840 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  15. Forni, M., Reichlin, L.: Let’s get real: Factor to analytical cycle approach dynamics disaggregated business. Rev. Econ. Stud. 65, 453–473 (1998)zbMATHCrossRefGoogle Scholar
  16. Hollmann, F.W., Mulder, T.J., Kallan, J.E.: Methodology and assumptions for the population projections of the United States: 1999 to 2100. Population Division U.S. Census Bureau Working Paper 38 (2000)Google Scholar
  17. Lee, R.D., Carter, L.R.: Modeling and forecasting U.S. mortality. J. Am. Stat. Assoc. 87, 659–671 (1992)Google Scholar
  18. Mitchell, D., Brockett, P., Mendoza-Arriaga, R., Muthuraman, K.: Modeling and forecasting mortality rates. Insur. Math. Econ. 52, 275–285 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  19. Peña, D., Poncela, P.: Nonstationary dynamic factor analysis. J. Stat. Plan. Inf. 136, 1237–1257 (2006)zbMATHCrossRefGoogle Scholar
  20. Plat, R.: One -year value-at-risk for longevity and mortality. Insur. Math. Econ. 49, 462–470 (2011)Google Scholar
  21. Stock, J.H., Watson, M.W.: Forecasting using principal components from a large number of predictors. J. Am. Stat. Assoc. 97, 1167–1179 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  22. Stock, J.H., Watson, M.W.: Forecasting with many predictors. Handb. Econ. Forecast. 1, 515–554 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jorge M. Uribe
    • 1
    Email author
  • Helena Chuliá
    • 2
  • Montserrat Guillén
    • 2
  1. 1.Department of EconomicsUniversidad del Valle and University of BarcelonaCaliColombia
  2. 2.Department of EconometricsUniversity of BarcelonaBarcelonaSpain

Personalised recommendations