Advertisement

Using Machine Learning Techniques for the Automatic Detection of Arterial Wall Layers in Carotid Ultrasounds

  • Rosa-María Menchón-Lara
  • José-Luis Sancho-Gómez
  • Adrián Sánchez-Morales
  • Álvar Legaz-Aparicio
  • Juan Morales-Sánchez
  • Rafael Verdú-Monedero
  • Jorge Larrey-Ruiz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 376)

Abstract

A fully automatic segmentation method for ultrasound images of the common carotid artery is proposed in this paper. The goal of this procedure is the detection of the arterial wall layers to assist in the evaluation of the Intima-Media Thickness (IMT), which is an early indicator of atherosclerosis and, therefore, of the cardiovascular risk. By measuring and monitoring the IMT, specialists are able to detect the incipient thickening of the arteries when the patient is still asymptomatic and to prescribe the appropriate preventive care. The proposed methodology is completely based on Machine Learning and it applies Auto-Encoders and Deep Learning to obtain abstract and efficient data representations. A set of 45 ultrasound images have been used in the validation of the suggested system. In particular, the resulting automatic contours for each image have been compared with four manual segmentations performed by two different observers. This study demonstrates the accuracy of our segmentation method, which achieves the correct recognition of the arterial layers in all the tested images in a totally user-independent and repeatable manner.

Keywords

Machine learning Deep learning Auto-encoders Ultrasound imaging Intima-media thickness 

Notes

Acknowledgments

Authors would like to thank the Radiology Department of ‘Hospital Universitario Virgen de la Arrixaca’ (Murcia, Spain) for their kind collaboration and for providing all the ultrasound images used.

References

  1. 1.
    Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)Google Scholar
  2. 2.
    L. Deng, D. Yu, Deep learning: methods and applications. Technical Report MSR-TR-2014-21 (January 2014), http://research.microsoft.com/apps/pubs/default.aspx?id=209355
  3. 3.
    G.B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 42(2), 513–529 (2012)Google Scholar
  4. 4.
    G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)CrossRefGoogle Scholar
  5. 5.
    L.L.C. Kasun, H. Zhou, G.B. Huang, C.M. Vong, Representational learning with extreme learning machine for big data. IEEE Intell. Syst. 28(6), 31–34 (2013)Google Scholar
  6. 6.
    R.M. Menchón-Lara, M.C. Bastida-Jumilla, J. Morales-Sánchez, J.L. Sancho-Gómez, Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks. Med. Biol. Eng. Comput. 52(2), 169–181 (2014)CrossRefGoogle Scholar
  7. 7.
    R.M. Menchón-Lara, J.L. Sancho-Gómez, Fully automatic segmentation of ultrasound common carotid artery images based on machine learning. Neurocomputing 151(Part 1(0)), 161–167 (2015)Google Scholar
  8. 8.
    K.S. Nikita, Atherosclerosis: the evolving role of vascular image analysis. Comput. Med. Imaging Graph. 37(1), 1–3 (2013)CrossRefGoogle Scholar
  9. 9.
    P.J. Touboul et al., Mannheim carotid intima-media thickness and plaque consensus (2004–2006-2011). Cerebrovasc. Dis. 34, 290–296 (2012)CrossRefGoogle Scholar
  10. 10.
    WHO, Global atlas on cardiovascular disease prevention and control. Online, www.who.int/cardiovascular_diseases/en/

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rosa-María Menchón-Lara
    • 1
  • José-Luis Sancho-Gómez
    • 1
  • Adrián Sánchez-Morales
    • 1
  • Álvar Legaz-Aparicio
    • 1
  • Juan Morales-Sánchez
    • 1
  • Rafael Verdú-Monedero
    • 1
  • Jorge Larrey-Ruiz
    • 1
  1. 1.Dpto. Tecnologí as de la Información y las ComunicacioneUniversidad Politécnica de CartagenaCartagena, MurciaSpain

Personalised recommendations