Advertisement

Fuzzy Modifiers at the Core of Interpretable Fuzzy Systems

  • Bernadette Bouchon-Meunier
  • Christophe Marsala
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 326)

Abstract

Fuzzy modifiers associated with linguistic hedges have been introduced by L.A. Zadeh at the early stage of approximate reasoning and they are fundamental elements in the management of interpretable systems. They can be regarded as a solution to the construction of fuzzy sets slightly different from original ones. We first present the main definitions of modifiers based on mathematical transformations of membership functions, mainly focusing on so-called post-modifiers and pre-modifiers, as well as definitions based on fuzzy relations. We show that measures of similarity are useful to evaluate the proximity between the original fuzzy sets and their modified form and we point out links between modifiers and similarities. We then propose an overview of application domains which can take advantage of fuzzy modifiers, for instance analogy-based reasoning, rule-based systems, gradual systems, databases, machine learning, image processing, and description logic. It can be observed that fuzzy modifiers are either constructed in a prior way by means of formal definitions or automatically learnt or tuned, for instance in hybrid systems involving genetic algorithm-based methods.

Keywords

Fuzzy modifiers Linguistics hedges Similarity 

References

  1. 1.
    Rissland, E.: Ai and similarity. IEEE Intell. Syst. 21, 39–49 (2006)CrossRefGoogle Scholar
  2. 2.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man. Cybern. 3:28–44 (1973)Google Scholar
  3. 3.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—part I. Inf. Sci. 8, 199–249 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—part II. Inf. Sci. 8, 301–357 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—part III. Inf. Sci. 9, 43–80 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Zadeh, L.A.: A fuzzy-set-theoretic interpretation of linguistic hedges. Cybern. Syst. 2(3), 4–34 (1972)MathSciNetGoogle Scholar
  7. 7.
    Hersh, H.M., Caramazza, A.: A fuzzy set approach to modifiers and vagueness in natural language. J. Exp. Psychol. 105, 254–276 (1976)CrossRefGoogle Scholar
  8. 8.
    Lakoff, G.: Hedges: a study in meaning criteria and the logic of fuzzy concepts. J. Philos. Logic 2, 458508 (1973)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Macvicar-Whelm, P.J.: Fuzzy sets, the concept of height and the edge very. IEEE Trans. Syst. Man Cybern. 8(6), 507–512 (1978)CrossRefGoogle Scholar
  10. 10.
    Baldwin, J.F.: Fuzzy logic and fuzzy reasoning. Int. J. Man-Mach. Stud. 11(4), 465–480 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Eshragh, F., Mamdani, E.H.: A general approach to linguistic approximation. Int. J. Man-Mach. Stud. 11(4), 501–519 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Wenstop, F.: Deductive verbal models of organizations. Int. J. Man-Mach. Stud. 8(3), 293–311 (1976)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zadeh, L.A.: PRUF-a meaning representation language for natural languages. Int. J. Man-Mach. Stud. 10(4), 395–460 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Ho, N.C., Nam, H.V.: An algebraic approach to linguistic hedges in zadehs fuzzy logic. Fuzzy Sets Syst. 129, 229–254 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ying, M., Bouchon-Meunier, B.: Quantifiers, modifiers and qualifier in fuzzy logic. J. Appl. Non-class. Logics 7(3), 335–342 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ying, M., Bouchon-Meunier, B.: Approximate reasoning with linguistic modifiers. Int. J. Intell. Syst. 13, 403–418 (1998)CrossRefGoogle Scholar
  17. 17.
    Ostaszewski, K., Karwowski, W.: Linguistic hedges and fuzzy normalization operator. In: Proceedings of the Third Congress of the International Fuzzy Systems Association, pp. 528–531, Seattle, Washington, USA (1989)Google Scholar
  18. 18.
    Burillo, P., Fuentes-González, R., González, L., Marin, A.: On contrast intensification operators and fuzzy equality relations. Mathw. Soft Comput. 7, 15–27 (2000)zbMATHGoogle Scholar
  19. 19.
    Bloch, I. (ed.): Information Fusion in Signal and Image Processing: Major Probabilistic and Non-Probabilistic Numerical Approaches. Wiley-ISTE, New York (2007)Google Scholar
  20. 20.
    De Cock, M., Kerre, E.E.: A context-based approach to linguistic hedges. Int. J. Appl. Math. Comput. Sci. 12, 371–382 (2002)zbMATHGoogle Scholar
  21. 21.
    Bouchon, B.: Stability of linguistic modifiers compatible with a fuzzy logic. In: Uncertainty in Intelligent Systems. Lecture Notes in Computer Science, pp. 63–70. Springer, Berlin (1988)Google Scholar
  22. 22.
    Bouchon-Meunier, B.: Fuzzy logic and knowledge representation using linguistic modifiers. In: Kacprzyk, J., Zadeh, L.A. (eds.) Fuzzy Logic for the Management of Uncertainty. Wiley, New York (1992)Google Scholar
  23. 23.
    Bouchon, B., Yao, J.: Linguistic modifiers and gradual membership to a category. Int.l J. Intell. Syst. 7(1), 25–36 (1992)CrossRefzbMATHGoogle Scholar
  24. 24.
    Bouchon-Meunier, B., Marsala, C.: Linguistic modifiers and measures of similarity or resemblance. In: Proceedings of the 9th IFSA World Congress, pp. 2195–2199, Vancouver, Canada (2001)Google Scholar
  25. 25.
    De Cock, M., Kerre, E.E.: Fuzzy modifiers based on fuzzy relations. Inf. Sci. 160(1–4), 173–199 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Bodenhofer, U., De Cock, M., Kerre, E.E.: Openings and closures of fuzzy preorderings: theoretical basics and applications to fuzzy rule-based systems. Int. J. Gen. Syst. 32(4), 343–360 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Bouchon-Meunier, B.: Interpretable decisions by means of similarities and modifiers. In: IEEE International Conference on Fuzzy Systems, Jeju, South Korea (2009)Google Scholar
  28. 28.
    Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards general measures of comparison of objects. Fuzzy Sets Syst. 84(2), 143–153 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Godo, L., Lopez de Mantaras, R., Sierra, C., Verdaguer, A.: MILORD: the architecture and the management of linguistically expressed uncertainty. Int. J. Intell. Syst. 4(4), 471–501 (1989)CrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, B.-D., Chen, C.-Y., Tsao, J.-Y.: Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms. IEEE Trans. Syst. Man Cybern. B Cybern. 31(1), 32–53 (2001)CrossRefGoogle Scholar
  31. 31.
    Casillas, J., Cordon, O., Herrera, F., Magdalena, L.: Accuracy improvements to find the balance interpretability-accuracy in linguistic fuzzy modeling: an overview. In: Casillas, J., Cordon, O.. Herrera Triguero, F., Magdalena, L. (eds.) Accuracy Improvements in Linguistic Fuzzy Modeling, vol. 129 of Studies in Fuzziness and Soft Computing, pp. 3–24. Springer, Berlin (2003)Google Scholar
  32. 32.
    Cordon, O., Del Jesus, M.J., Herrera, F.: Genetic learning of fuzzy rule-based classification systems cooperating with fuzzy reasoning methods. Int. J. Intell. Syst. 13, 1025–1053 (1997)CrossRefGoogle Scholar
  33. 33.
    Gonzàlez, A., Pérez, R.: A study about the inclusion of linguistic hedges in a fuzzy rule learning algorithm. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7(3), 257–266 (1999)CrossRefGoogle Scholar
  34. 34.
    Bosc, P., Pivert, O.: Fuzzy queries and relational databases. In: Proceedings of the ACM Symposium on Applied Computing (SAC’94), pp. 170–174, Phoenix, Arizona, USA (1994)Google Scholar
  35. 35.
    Nakajima, H., Sogoh, T., Arao, M.: Fuzzy database language and library-fuzzy extension to sql. In: Proceedings of the Second IEEE International Conference on Fuzzy Systems, vol. 1, pp. 477–482, San Francisco, CA, USA (1993)Google Scholar
  36. 36.
    Chen, G., Wei, Q.: Fuzzy association rules and the extended mining algorithms. Inf. Sci. 147(1–4), 201–228 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Hölldobler, S., Khang, T.D., Störr, H.: A fuzzy description logic with hedges as concept modifiers. In: Proceedings InTech/VJFuzzy2002, pp. 25–34 (2002)Google Scholar
  38. 38.
    Medasani, S., Krishnapuram, R.: A fuzzy approach to content-based image retrieval. In: Proceedings of th IEEE International Conference on Fuzzy Systems, pp. 1251–1260, Seoul, Korea (1999)Google Scholar
  39. 39.
    Botteldooren, D., Verkeyn, A., Cornelis, C., De Cock, M.: On the meaning of noise annoyance modifiers: a fuzzy set theoretical approach. Acta Acustica A United Acustica 88, 239–251 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bernadette Bouchon-Meunier
    • 1
    • 2
  • Christophe Marsala
    • 1
    • 2
  1. 1.Sorbonne UniversitésUPMC Univ Paris 06ParisFrance
  2. 2.CNRSParisFrance

Personalised recommendations