Advertisement

Geospatial Uncertainty Representation: Fuzzy and Rough Set Approaches

  • Frederick Petry
  • Paul Elmore
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 326)

Abstract

Uncertainty in geospatial data is often considered in the context of geographical information systems which enable a variety of operations and manipulation of spatial data. Here we consider how both fuzzy set and rough set theory has been used to represent geospatial data with uncertainty. Terrain modeling and triangulated irregular networks techniques utilizing fuzzy sets are presented. Rough set theory is overviewed and its application to spatial data is described. Issues of uncertainty in the representation of spatial relationships such as topological and directional relationships are discussed.

Keywords

Geographic information systems Spatial database Fuzzy sets Rough sets Triangulated irregular networks Indiscernibility relation Spatial relations Upper and lower approximations 

Notes

Acknowledgments

We would like to thank the Naval Research Laboratory’s Base Program, Program Element No. 0602435 N for sponsoring this research.

References

  1. 1.
    Longley, P., Goodchild, M., Maguire, D., Rhind, D.: Geographic Information Systems and Science, 3rd edn. Wiley, Chichestere (2010)Google Scholar
  2. 2.
    Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases with Application to GIS. Morgan Kaufmann San Francisco (2002)Google Scholar
  3. 3.
    Shekar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, Upper Saddle River (2003)Google Scholar
  4. 4.
    Boyd, D., Crawford, K.: Critical questions for big data. Inf. Commun. Soc. 15(5), 662–679 (2012)CrossRefGoogle Scholar
  5. 5.
    Michael, K., Miller, K.: Big Data: New opportunities and new challenges. IEEE Comput. 46(6), 22–24 (2013)CrossRefGoogle Scholar
  6. 6.
    Shekar, S., Gunturi, V., Evans, M., Yang, K.: Spatial big-data challenges—intersecting mobility and cloud computing. In: Proceedings of 11th ACM International Workshop on Data Engineering for Wireless and Mobile Access, New York, pp. 1–6 (2012)Google Scholar
  7. 7.
    Overpeck, J., Meehl, G., Bony, S., Easterling, D.: Climate data challenges in the 21st century. Science 331, 700–702 (2011)CrossRefGoogle Scholar
  8. 8.
    Vatsavai, R., Chandola, V., Klasky, S., Ganguly, A., Stefandidis, A., Shekhar, S.: Spatiotemporal data mining in the era of big data. In: Proceedings of ACM Sigspatial: Bigspatial ‘12, Redondo Beach, CA, pp. 1–10 (2012)Google Scholar
  9. 9.
    Burrough, P., Frank, A. (eds.): Geographic Objects with Indeterminate Boundaries, GISDATA Series, vol. 2. Taylor and Francis, London (1996)Google Scholar
  10. 10.
    Zhang, J., Goodchild, M .: Uncertainty in Geographical Information. Taylor and Francis, London (2002)Google Scholar
  11. 11.
    Varsi, A.: Philosophical issues in geography—an introduction. Topoi 20, 119–130 (2001)CrossRefGoogle Scholar
  12. 12.
    Varsi, A.: Vagueness in geography. Philos. Geogr. 4, 49–65 (2001)CrossRefGoogle Scholar
  13. 13.
    Couclelis, H.: The certainty of uncertainty: GIS and the limits of geographic knowledge. Trans. GIS 7(2), 165–175 (2003)CrossRefGoogle Scholar
  14. 14.
    Worboys, M., Clementini, E.: Integration of imperfect spatial information. J. Vis. Lang. Comput. 12, 61–80 (2001)CrossRefGoogle Scholar
  15. 15.
    Beaubouef, T., Petry, F., Breckenridge, J.: Rough set based uncertainty management for spatial databases and geographical information systems. In: Suzuki, Y. (ed.) Soft Computing in Industrial Applications, pp. 471–479. Chap 6a. Springer, London (2000)Google Scholar
  16. 16.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gale, S.: Inexactness, fuzzy sets, and the foundations of behavioral geography. Geogr. Anal. 4, 337–349 (1972)CrossRefGoogle Scholar
  18. 18.
    Fisher, P.: Boolean and fuzzy regions. In: Burrough, P.A., Frank, A. (eds.) Geographic Objects with Indeterminate Boundaries, 87–94. Taylor and Francis, London (1996)Google Scholar
  19. 19.
    Robinson, V., Frank, A.: About different kinds of uncertainty in geographic information systems. In: Proceedings AUTOCARTO 7 Conference, pp. 440–449. American Society for Photogrammetry and Remote Sensing, Falls Church (1985)Google Scholar
  20. 20.
    Wang, F.: A fuzzy grammar and possibility theory-based natural language user interface for spatial queries. Int. J. Fuzzy Sets Syst. 113, 147–159 (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Cobb, M., Petry, F.: Modeling Spatial data within a fuzzy framework. J. Am. Soc. Inf. Sci. 49(3), 253–266 (1998)CrossRefGoogle Scholar
  22. 22.
    Cross, V., Firat, A.: Fuzzy objects for geographical information systems. Fuzzy Sets Syst. 113, 19–36 (2000)CrossRefzbMATHGoogle Scholar
  23. 23.
    De Tré, G., De Caluwe, R.: A generalized object-oriented database model with generalized constraints. In: Proceedings of NAFIPS 1999, New York, pp. 381–386 (1999)Google Scholar
  24. 24.
    Morris, A.: A framework for modeling uncertainty in spatial databases. Trans. GIS 7, 83–101 (2003)CrossRefGoogle Scholar
  25. 25.
    Skidmore, A.: Terrain position as mapped from a gridded digital elevation model. Int. J. Geogr. Inf. Syst. 4, 33–49 (1990)CrossRefGoogle Scholar
  26. 26.
    Irvin, B., Ventura, S., Slater, B.: Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 77, 137–154 (1996)CrossRefGoogle Scholar
  27. 27.
    MacMillan, R., Pettapiece, W., Nolan, S., Goddard, T.: A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets Syst. 113, 81–109 (2000)CrossRefzbMATHGoogle Scholar
  28. 28.
    Shi, X., Xing, A., Zhu, A., Wang, R.: Fuzzy representation of special terrain features using a similarity-based approach. In: Petry, F., Robinson, V., Cobb, M. (eds.) Fuzzy Modeling with Spatial Information for Geographic Problems, pp. 233–252. Springer, Heidelberg (2005)Google Scholar
  29. 29.
    Verstraete, J., De Tré, G., De Caluwe, R., Hallez, A.: Field based methods for the modeling of fuzzy spatial data. In: Petry, F., Robinson, V., Cobb, M. (eds.) Fuzzy Modeling with Spatial Information for Geographic Problems, pp. 41–70. Springer, Heidelberg (2005)Google Scholar
  30. 30.
    Schneider, M.: Spatial data types for database systems. Doctoral Thesis, Fern Universität Hagen, GRGoogle Scholar
  31. 31.
    Worboys, M.: Imprecision in finite resolution spatial data. Geoinformatica 2(3), 257–280 (1998)CrossRefGoogle Scholar
  32. 32.
    Worboys, M.: Computation with imprecise geospatial data. Comput. Environ. Urban Syst. 22(2), 85–106 (1998)CrossRefGoogle Scholar
  33. 33.
    Ahlqvist, O., Keukelaar, J., Oukbir, K.: Rough classification and accuracy assessment. Int. J. Geogr. Inf. Sci. 14(5), 475–496 (2000)CrossRefGoogle Scholar
  34. 34.
    Wang, S., Yuan, H., Chen, G., Li, D., Shi, W.: Rough spatial interpretation. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 435–444. Springer, Heidelberg (2004)Google Scholar
  35. 35.
    Bittner, T., Stell, J.: Stratified rough sets and vagueness. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 286–303. Springer, Heidelberg (2003)Google Scholar
  36. 36.
    Pawlak, Z.: Rough sets. Int. J. Man-Mach. Stud. 21, 127–134 (1984)CrossRefzbMATHGoogle Scholar
  37. 37.
    Egenhofer, M., Franzosa, R.: Point set topological spatial relations. Int. J. Geogr. Inf. Syst. 5(2), 161–174 (1991)CrossRefGoogle Scholar
  38. 38.
    Papadias, D., Karacapilidis, N., Arkoumnais, D.: Processing fuzzy spatial queries: a configuration similarity approach. Int. J. Geogr. Inf. Sci. 13, 93–128 (1999)CrossRefGoogle Scholar
  39. 39.
    Kulik, L., Eschenbach, C., Habel, C., Schmidtke, H.: A graded approach to directions between extended objects. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 119–131. Springer, Heidelberg (2002)Google Scholar
  40. 40.
    Vazirgiannis, M.: Uncertainty handling in spatial relationships. In: ACM-SAC 2000 Proceedings, Como Italy, pp. 215–221 (2000)Google Scholar
  41. 41.
    Matsakis, P.: Understanding the spatial organization of image regions by force histograms. In: Matsakis, P., Sztandra, L. (eds.) Applying Soft Computing in Defining Spatial Relations, 1–16. Physica Verlag, Heidelberg (2002)CrossRefGoogle Scholar
  42. 42.
    Guesgen, H.: Fuzzifying Spatial Relations. In: Matsakis, P., Sztandra, L. (eds.) Applying Soft Computing in Defining Spatial Relations, GR 99-122. Physica Verlag, Heidelberg (2002)Google Scholar
  43. 43.
    Dutta, S.: Approximate spatial reasoning: integrating qualitative and quantitative constraints. Int. J. Approx. Reason. 5(3), 307–331 (1991)CrossRefGoogle Scholar
  44. 44.
    Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  45. 45.
    Cobb, M., Petry, F.: Geometric approximations of spatial boundaries and assessment of fuzzy spatial relationships. Fuzzy Sets Syst. 113, 111–120 (2000)CrossRefzbMATHGoogle Scholar
  46. 46.
    Petry, F., Cobb, M., Wen, L., Yang, H.: Design of system for managing fuzzy relationships for integration of spatial data in querying. Fuzzy Sets Syst. 140, 51–73 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Mendel, J., John, R.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Sets 10, 117–127 (2002)Google Scholar
  48. 48.
    Verstraete, J.: Using level-2 fuzzy sets to combine uncertainty and imprecision in fuzzy regions. In: Mugellini, E., Szczepaniak, P., Pettenati, M., Sokhn, M. (eds.) Advances in Intelligent Web Mastering, vol. 3, pp. 163–172 (2011)Google Scholar
  49. 49.
    Verstraete, J.: Surface area of level-2 fuzzy regions unifying possibilistic and versitic interpretations of regions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds.) Artifical Intellgience and Soft Computing, pp. 342–349. Springer (2012)Google Scholar
  50. 50.
    Atanassov, K.: Intuitionstic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Marine Geosciences DivisionGeospatial Science and Technology BranchRaleighUSA
  2. 2.Naval Research LaboratoryStennis Space Center, MS 39529WashingtonUSA

Personalised recommendations