Forensic DNA Typing



Forensic DNA typing is generally dated to 1985 and has become the most commonly performed analysis in the modern forensic science laboratory. The technology and methods have evolved and continue to evolve. Analysis of Short Tandem Repeats (STRs) following polymerase chain reaction amplification is used routinely, but other genetic markers, such as Y chromosome STRs, single nucleotide polymorphisms, and mitochondrial DNA, are also tested. These technologies can be applied to a wide variety of evidentiary specimens and powerfully discriminate individuals. They are commonly introduced into court. In fact, forensic DNA is now considered the “gold standard” of forensic science technologies.


Forensic DNA typing Forensic molecular biology Forensic genetics STRs Biological evidence 


  1. 1.
    Edwards HT, Gatsonis C, Berger MA, et al. Strengthening forensic science in the United States: a path forward. Washington, DC: National Academies Press; 2009.Google Scholar
  2. 2.
    Wilson DB, Weisburd D, McClure D. Use of DNA testing in police investigative work for increasing offender identification, arrest, conviction, and case clearance. Published online at:
  3. 3.
    Weedn VW, Roby RK. Forensic DNA testing. Arch Pathol Lab Med. 1993;117:486–91.PubMedGoogle Scholar
  4. 4.
    Steadman GW. Survey of DNA Crime Laboratories, 1998. Bureau of Justice Statistics. NCJ 179104. February 2000:1–8.Google Scholar
  5. 5.
    Durose MR. Census of Publicly Funded Forensic Crime Laboratories, 2005. Bureau of Justice Statistics. NCJ 222181. July 29, 2008:1–12.Google Scholar
  6. 6.
    DNA Initiative: Advancing Criminal Justice Through DNA Technology website. Accessed Mar 22, 2012.
  7. 7.
    Nelson M. Making Sense of DNA Backlogs, 2010 – Myths vs. Reality. National Institute of Justice. NCJ 232197. February 2011:1–20.Google Scholar
  8. 8.
    Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA ‘fingerprints’. Nature. 1985;318:577–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Kuperus WR, Hummel KH, Roney JM, et al. Crime scene links through DNA evidence: the practical experience from Saskatchewan casework. Can Soc For Sci J. 2003;36(1):19–28.Google Scholar
  10. 10.
    Parker B, Peterson J. Physical evidence utilization. In: Cohn SI, McMahon WB, editors. The administration of criminal justice, technology III. Chicago, IL: ITT Research Institute; 1970.Google Scholar
  11. 11.
    Foran DR, Gehring ME, Stallworth SE. The recovery and analysis of mitochondrial DNA from exploded pipe bombs. J For Sci. 2009;54:90–4.Google Scholar
  12. 12.
    Crime in the United States website, 2009 Summary. FBI. Accessed Mar 22, 2012.
  13. 13.
    Crime in the United States website, 2007 Clearances. Accessed Mar 22, 2012.
  14. 14.
    Kempf KL. Crime severity and criminal career progression. J Crim Law Criminol. 1988;79(2):524–40.CrossRefGoogle Scholar
  15. 15.
    Zedlewski E, Murphy MB. DNA analysis for “minor” crimes: a major benefit for law enforcement. NIJ J. 2006;253:2–5.Google Scholar
  16. 16.
    Roman JK, Reid SE, Chalfin AJ, Knight CR. The DNA field experiment: a randomized trial of the cost-effectiveness of using DNA to solve property crimes. J Exp Criminol. 2009;5:345–69.CrossRefGoogle Scholar
  17. 17.
    van Oorschot RAH, Jones MK. DNA fingerprints from fingerprints. Nature. 1997;387:767.CrossRefPubMedGoogle Scholar
  18. 18.
    Gill P, Whitaker J, Flaxman C, Brown N, Buckleton J. An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. For Sci Int. 2000;112(1):17–40.Google Scholar
  19. 19.
    Caragine T, Mikulasovich R, Tamariz J. Validation of testing and interpretation protocols for low template DNA samples using AmpFlSTR Identifiler. Croat Med J. 2009;50:250–67.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Budowle B, Eisenberg AJ, van Daal A. Low copy number typing has yet to achieve “general acceptance”. For Sci Int Genet. 2009;2(1):551–2. responses at For Sci Int Genet. 2011;5(1):3–11.CrossRefGoogle Scholar
  21. 21.
    Castella V, Dimo-Simonin N, Brandt-Casadevall C, et al. Forensic identification of urine samples: a comparison between nuclear and mitochondrial DNA markers. Int J Legal Med. 2005;120(2):67–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Weedn VW, Baum H. DNA identification in mass fatality incidents. Am J For Med Pathol. 2011;32(4):393–7.CrossRefGoogle Scholar
  23. 23.
    Sensabaugh G, Kaye DH. Non-human DNA evidence. Jurimetrics. 1998;39(1):1–16.Google Scholar
  24. 24.
    Budowle B, Schultze SE, Breeze RG, Keim PS, Morse SA, editors. Microbial forensics. 2nd ed. Burlington, MA: Academic; 2011.Google Scholar
  25. 25.
    Gast AP, Relman DA, et al. Review of the scientific approaches used during the FBI’s investigation of the 2001 anthrax letters. Washington, DC: National Academies Press; 2001.Google Scholar
  26. 26.
    Tsongalis GJ, Wu AH, Silver H, Ricci A. Applications of forensic identity testing in the clinical laboratory. Am J Clin Pathol. 1999;112(1 Supp 1):S93–103.PubMedGoogle Scholar
  27. 27.
    Saks MJ, Koehler JJ. The coming paradigm shift in forensic identification science. Science. 2005;309(5736):892–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–17.CrossRefPubMedGoogle Scholar
  29. 29.
    Wyman AR, White R. A highly polymorphic locus in human DNA. Proc Natl Acad Sci U S A. 1980;77:6754–8.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Jeffreys AJ, Wilson V, Thein SL. Hypervariable “minisatellite” regions in human DNA. Nature. 1985;314:67–73.CrossRefPubMedGoogle Scholar
  31. 31.
    Jeffreys AJ, Wilson V, Thein SL. Individual specific “fingerprints” of human DNA. Nature. 1985;316:76–9.CrossRefPubMedGoogle Scholar
  32. 32.
    R. v. Pitchfork, EWCA Crim 963, Case No. 2008/04629/A1, 2009.Google Scholar
  33. 33.
    Wambaugh J. The blooding. New York, NY: Bantam Books; 1989.Google Scholar
  34. 34.
    Andrews v State, 533 So 841 (Fla Dist. Ct. App. 1988).Google Scholar
  35. 35.
    Commonwealth v Pestinikas, Ct of Common Pleas, Lackawanna Cnty, No. CR1019A-D/CR1020A-E, Dec. 2, 1988; 421 Pa Super. 371, 617 A2d 1339, 1343 (Pa Super. Ct. 1992).Google Scholar
  36. 36.
    Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Puers C, Hammond HA, Jin L, Caskey T, Schumm JW. Identification of repeat sequence heterogeneity at the polymorphic short tandem repeat locus HUMTHO1 [AATG]n and reassignment of alleles in population analysis by using a locus-specific ladder. Am J Hum Genet. 1993;53:953–8.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Lygo JE, Johnson PE, Holdaway DJ, et al. The validation of short tandem repeat (STR) loci for use in forensic casework. Int J Legal Med. 1994;107:77–89.CrossRefPubMedGoogle Scholar
  39. 39.
    Clayton TM, Whitaker JP, Fisher DL, et al. Further validation of a quadruplex STR DNA typing system: a collaborative effort to identify victims of a mass disaster. For Sci Int. 1995;76(l):17–25.Google Scholar
  40. 40.
    Butler JM, Reeder DJ. Short Tandem Repeat DNA Internet DataBase website.
  41. 41.
    Butler JM. Genetics and genomics of core short tandem repeat Loci used in human identity testing. J For Sci. 2006;51(2):253–65.Google Scholar
  42. 42.
    Butler JM, Schoske R, Vallone PM, Redman JW, Kline MC. Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations. J For Sci. 2003;48(4):1–4.Google Scholar
  43. 43.
    Hares DR. Expanding the CODIS core loci in the United States. For Sci Int Genetics. 2012;6(1):e52–4.CrossRefGoogle Scholar
  44. 44.
    Sullivan KM, Manucci A, Kimpton CP, Gill P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques. 1993;15:637–41.Google Scholar
  45. 45.
    Frances F, Portoles O, Gonzalez JI, et al. Amelogenin test: from forensics to biochemical genomics. Clin Chim Acta. 2007;386(1-2):53–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Foster EA, Jobling MA, Taylor PG, et al. Jefferson fathered slave’s last child. Nature. 1998;396:27–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Butler JM, Reeder DJ. Short Tandem Repeat DNA Internet DataBase website, Y-Chromosome STRs.
  48. 48.
    Syvanen A-C. Accessing genetic variation: genotyping single nuclear polymorphisms. Nat Rev Genet. 2001;2:930–42.CrossRefPubMedGoogle Scholar
  49. 49.
    Sobrino B, Brion M, Carracedo A. SNPs in forensic genetics: a review on SNP typing methodologies. For Sci Int. 2005;154(2-3):181–94.Google Scholar
  50. 50.
    Kidd KK, Pakstis AJ, Speed WC, et al. Developing a SNP panel for forensic identification of individuals. For Sci Int. 2006;164(1):20–32.Google Scholar
  51. 51.
    Miller FJ, Rosenfeldt FL, Zhang C, et al. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003;31(11):e61.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Foran DR. 2006 The relative degradation of nuclear and mitochondrial DNA: an experimental approach. J For Sci. 2006;51:766–70.Google Scholar
  53. 53.
    Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.CrossRefPubMedGoogle Scholar
  54. 54.
    Andrews RM, Kubacka I, Chinnery PF, et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 1999;23(2):147.CrossRefPubMedGoogle Scholar
  55. 55.
    MITOMAP: A Human Mitochondrial Genome Database., 2011.
  56. 56.
    Parsons TJ, Coble MD. Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome. Croat Med J. 2001;42(3):304–9.PubMedGoogle Scholar
  57. 57.
    Corach D, Sala A, Iannucci N, et al. Additional approaches to DNA typing of skeletal remains: the search for “missing” persons killed during the last dictatorship in Argentina. Electrophoresis. 1997;18:1608–12.CrossRefPubMedGoogle Scholar
  58. 58.
    Holland MM, Fisher DL, Mitchell LG, et al. Mitochondrial DNA sequence analysis of human skeletal remains: identification of remains from the Vietnam War. J For Sci. 1993;38(3):542–53.Google Scholar
  59. 59.
    Holland MM, Parsons TJ. Mitochondrial DNA sequence analysis: validation and use for forensic casework. For Sci Rev. 1999;11:21–50.Google Scholar
  60. 60.
    State of Tenn. Hamilton Cnty No. 234768, E2008-02392-CCA-R3-PC, No. 03C01-9705-CR-00164, 1999 WL 233592 (Tenn Ct Crim App,1996).Google Scholar
  61. 61.
    Gill P, Ivanov PL, Kimpton C, et al. Identification of the remains of the Romanov family by DNA analysis. Nat Genet. 1994;6:130–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of Tsar Nicholas II. Nat Genet. 1996;12:417–20.CrossRefPubMedGoogle Scholar
  63. 63.
    Parsons TJ, Muniec DS, Sullivan K. A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet. 1997;15:363–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Budowle B, Allard MW, Wilson MR, Chakraborty R. Forensics and mitochondrial DNA: applications, debates, and foundations. Ann Rev Genom Hum Genet. 2003;4:119–41.CrossRefGoogle Scholar
  65. 65.
    Pennisi E. Human genetic variation. Science. 2007;318:1842–3.CrossRefPubMedGoogle Scholar
  66. 66.
    Walsh S, Liu F, Ballantyne KN, et al. IrisPlex:A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. For Sci Int Genetics. 2011;5:170–80.CrossRefGoogle Scholar
  67. 67.
    Walsh S, Lindenbergh A, Zuniga SB, et al. Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence. For Sci Int Genetics. 2011;5:464–71.CrossRefGoogle Scholar
  68. 68.
    Kayser M, Schneider PM. DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations. For Sci Int Genet. 2009;3:154–61.CrossRefGoogle Scholar
  69. 69.
    Kosoy R, Nassir R, Tian C, et al. Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. BMC Genet. 2009;10:39–52.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Phillips C, Salas A, Sanchez JJ, et al. Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. For Sci Int Genetics. 2007;1:273–80.CrossRefGoogle Scholar
  71. 71.
    Newsome M. The inconvenient science of racial DNA profiling. Wired. Oct 5, 2007. Available at: = all
  72. 72.
  73. 73.
    Koops B-J, Schellekens M. Forensic DNA phenotyping: regulatory issues. Columbia Sci Technol Law Rev. 2008;9:158–202.Google Scholar
  74. 74.
    Jun J, Han SH, Jeong T-J, et al. Wildlife forensics using mitochondrial DNA sequences: species identification based on hairs collected in the field and confiscated tanned Felidae leathers. Gene Genom. 2011;33:721–6.CrossRefGoogle Scholar
  75. 75.
    Melton T, Holland C. Routine forensic use of the mitochondrial 12S ribosomal RNA gene for species identification. J For Sci. 2007;52(6):1305–7.Google Scholar
  76. 76.
    Wells JD, Stevens JR. Application of DNA-based methods in forensic entomology. Annu Rev Entomol. 2008;53:103–20.CrossRefPubMedGoogle Scholar
  77. 77.
    Nock CJ, Waters DLE, Edwards MA, et al. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J. 2011;9:328–33.CrossRefPubMedGoogle Scholar
  78. 78.
    Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS One. 2011;6(5):e19254.PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Coyle HM, Palmbach T, Juliano N, et al. An overview of methods for the identification and individualization of Marijuana. Croat Med J. 2003;44(3):315–21.Google Scholar
  80. 80.
    Lennard-Richard ML, Harper KA, Craig RL, et al. Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis. For Sci Int Genetics. 2012;6(4):452–60.CrossRefGoogle Scholar
  81. 81.
    Haas C, Muheim C, Kratzer A, et al. mRNA profiling for the identification of sperm and seminal plasma. For Sci Int Genet Suppl Ser. 2009;2:534–5.Google Scholar
  82. 82.
    NIJ Forensic DNA: Miniaturization and Automation website.
  83. 83.
    Asplen C. Rapid DNA analysis is coming—rapidly. Forensic Mag. Dec 14, 2011. Available at:
  84. 84.
    Balding DJ. Weight-of-evidence for forensic DNA profiles. West Sussex, England: John Wiley & Sons; 2005.CrossRefGoogle Scholar
  85. 85.
    Buckleton J, Triggs CM, Walsh SJ, editors. Forensic DNA evidence interpretation. Boca Raton, FL: CRC Press; 2005.Google Scholar
  86. 86.
    Evett IW, Weir BS. Interpreting DNA evidence: statistical genetics for forensic scientists. Sunderland, MA: Sinauer Associates; 1998.Google Scholar
  87. 87.
    Chakraborty R, Kidd KK. The utility of DNA typing in forensic casework. Science. 1991;254:1735–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Lander ES, Budowle B. DNA fingerprinting dispute laid to rest. Nature. 1994;371:735–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Devlin B, Risch N, Roeder K. No excess of homozygosity at DNA fingerprint loci. Science. 1990;249:1416–20.CrossRefPubMedGoogle Scholar
  90. 90.
    Roeder K. DNA fingerprinting: a review of the controversy. Stat Sci. 1994;9(2):222–47.Google Scholar
  91. 91.
    McKusick VA, Lander ES, et al. DNA technology in forensic science (NRC I). Washington, DC: National Academy Press; 1992.Google Scholar
  92. 92.
    Crow JF, et al. The evaluation of forensic DNA evidence (NRC II). Washington, DC: National Academy Press; 1996.Google Scholar
  93. 93.
    Frequently Asked Questions (FAQs) on the CODIS Program and the National DNA Index System. FBI.
  94. 94.
    Maryland v King, 569 U.S. ___, 2013.Google Scholar
  95. 95.
    Bieber FR, Lazer D. Guilt by association. New Sci. 2004;184(2470):20.PubMedGoogle Scholar
  96. 96.
    Brown E. Study probes DNA search method that led to ‘Grim Sleeper’ suspect. Los Angeles Times, Aug 15, 2013, at:,0,5635600.story
  97. 97.
    Federal Legislation on Forensic DNA, NIJ website;
  98. 98.
    DNA Advisory Board Quality Assurance Standards for Forensic DNA Testing Laboratories, NIST website;
  99. 99.
    Scientific Working Group on DNA Analysis Methods (SWGDAM) website;
  100. 100.
    Reeder DJ. Impact of DNA typing on standards and practice in the forensic community. Arch Pathol Lab Med. 1999;123:1063–5.PubMedGoogle Scholar
  101. 101.
    Coleman H, Swenson E. DNA in the courtroom: a trial watcher’s guide. Seattle, WA: Genelex Press; 1994.Google Scholar
  102. 102.
    Aronson JD. Genetic witness: science, law, and controversy in the making of DNA profiling. New Brunswick, NJ: Rutgers Univ Press; 2007.Google Scholar
  103. 103.
    Lynch M, Cole SA, McNally R, Jordan K. Truth machine: the contentious history of DNA fingerprinting. Chicago, IL: The Univ of Chicago Press; 2008.CrossRefGoogle Scholar
  104. 104.
    Calandro L, Reeder DJ, Cormier K. Evolution of DNA evidence for crime solving—a judicial and legislative history. Forensic Mag. January 6, 2005. Available at:,1
  105. 105.
    New York v Castro, 545 N.Y.S. 2d 985 (N.Y. Sup. Ct. 1989).Google Scholar
  106. 106.
    U.S. v Yee, 134 F.R.D. 161, 208 (N.D. Ohio 1991).Google Scholar
  107. 107.
    People v Hill, 107 Cal. Rptr. 2d 110, 89 Cal. App. 4th, 59-60 (Calif. 2001).Google Scholar
  108. 108.
    Lemour v State, 802 So. 2d 402 (Fla. Dist. Ct. App. 2001).Google Scholar
  109. 109.
    State v Butterfield, 27 P.3d 1133, 1144 (Utah 2001).Google Scholar
  110. 110.
    U.S. v Jenkins, 887 A.2d 1013, 1018 (D.C. 2005).Google Scholar
  111. 111.
    Kaye DH, Sensabaugh G. Reference guide on DNA identification evidence. Reference manual on scientific evidence. 3rd ed. Washington, DC: National Academies Press; 2011. p. 129–210.Google Scholar
  112. 112.
    Connors E, Lundregan T, Miller N, McEwen T. Convicted by juries, exonerated by science: case studies in the use of DNA evidence to establish innocence after trial. NCJ 161258. Washington, DC: National Institute of Justice; 1996.Google Scholar
  113. 113.
    Scheck B, Neufeld P, Dwyer J. Actual innocence: when justice goes wrong and how to make it right. New York, NY: Signet Books; 2001.Google Scholar
  114. 114.
    Innocence Project website (Benjamin Cardozo Law School);

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Forensic SciencesGeorge Washington UniversityWashingtonUSA
  2. 2.Forensic Science Program, School of Criminal JusticeMichigan State UniversityEast LansingUSA

Personalised recommendations