Molecular Pathology in Clinical Practice pp 793-810 | Cite as
Forensic DNA Typing
- 2 Citations
- 3k Downloads
Abstract
Forensic DNA typing is generally dated to 1985 and has become the most commonly performed analysis in the modern forensic science laboratory. The technology and methods have evolved and continue to evolve. Analysis of Short Tandem Repeats (STRs) following polymerase chain reaction amplification is used routinely, but other genetic markers, such as Y chromosome STRs, single nucleotide polymorphisms, and mitochondrial DNA, are also tested. These technologies can be applied to a wide variety of evidentiary specimens and powerfully discriminate individuals. They are commonly introduced into court. In fact, forensic DNA is now considered the “gold standard” of forensic science technologies.
Keywords
Forensic DNA typing Forensic molecular biology Forensic genetics STRs Biological evidenceReferences
- 1.Edwards HT, Gatsonis C, Berger MA, et al. Strengthening forensic science in the United States: a path forward. Washington, DC: National Academies Press; 2009.Google Scholar
- 2.Wilson DB, Weisburd D, McClure D. Use of DNA testing in police investigative work for increasing offender identification, arrest, conviction, and case clearance. Published online at: http://ceps.anu.edu.au/events/criminal_investigations_workshop/papers/David%20Weisburd%20-%20Rethinking%20the%20Role%20of%20Detectives.pdf.
- 3.Weedn VW, Roby RK. Forensic DNA testing. Arch Pathol Lab Med. 1993;117:486–91.PubMedGoogle Scholar
- 4.Steadman GW. Survey of DNA Crime Laboratories, 1998. Bureau of Justice Statistics. NCJ 179104. February 2000:1–8.Google Scholar
- 5.Durose MR. Census of Publicly Funded Forensic Crime Laboratories, 2005. Bureau of Justice Statistics. NCJ 222181. July 29, 2008:1–12.Google Scholar
- 6.DNA Initiative: Advancing Criminal Justice Through DNA Technology website. http://www.dna.gov/. Accessed Mar 22, 2012.
- 7.Nelson M. Making Sense of DNA Backlogs, 2010 – Myths vs. Reality. National Institute of Justice. NCJ 232197. February 2011:1–20.Google Scholar
- 8.Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA ‘fingerprints’. Nature. 1985;318:577–9.CrossRefPubMedGoogle Scholar
- 9.Kuperus WR, Hummel KH, Roney JM, et al. Crime scene links through DNA evidence: the practical experience from Saskatchewan casework. Can Soc For Sci J. 2003;36(1):19–28.Google Scholar
- 10.Parker B, Peterson J. Physical evidence utilization. In: Cohn SI, McMahon WB, editors. The administration of criminal justice, technology III. Chicago, IL: ITT Research Institute; 1970.Google Scholar
- 11.Foran DR, Gehring ME, Stallworth SE. The recovery and analysis of mitochondrial DNA from exploded pipe bombs. J For Sci. 2009;54:90–4.Google Scholar
- 12.Crime in the United States website, 2009 Summary. FBI. http://www2.fbi.gov/ucr/cius2009/about/crime_summary.html. Accessed Mar 22, 2012.
- 13.Crime in the United States website, 2007 Clearances. http://www2.fbi.gov/ucr/cius2007/offenses/clearances/index.html. Accessed Mar 22, 2012.
- 14.Kempf KL. Crime severity and criminal career progression. J Crim Law Criminol. 1988;79(2):524–40.CrossRefGoogle Scholar
- 15.Zedlewski E, Murphy MB. DNA analysis for “minor” crimes: a major benefit for law enforcement. NIJ J. 2006;253:2–5.Google Scholar
- 16.Roman JK, Reid SE, Chalfin AJ, Knight CR. The DNA field experiment: a randomized trial of the cost-effectiveness of using DNA to solve property crimes. J Exp Criminol. 2009;5:345–69.CrossRefGoogle Scholar
- 17.van Oorschot RAH, Jones MK. DNA fingerprints from fingerprints. Nature. 1997;387:767.CrossRefPubMedGoogle Scholar
- 18.Gill P, Whitaker J, Flaxman C, Brown N, Buckleton J. An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. For Sci Int. 2000;112(1):17–40.Google Scholar
- 19.Caragine T, Mikulasovich R, Tamariz J. Validation of testing and interpretation protocols for low template DNA samples using AmpFlSTR Identifiler. Croat Med J. 2009;50:250–67.PubMedCentralCrossRefPubMedGoogle Scholar
- 20.Budowle B, Eisenberg AJ, van Daal A. Low copy number typing has yet to achieve “general acceptance”. For Sci Int Genet. 2009;2(1):551–2. responses at For Sci Int Genet. 2011;5(1):3–11.CrossRefGoogle Scholar
- 21.Castella V, Dimo-Simonin N, Brandt-Casadevall C, et al. Forensic identification of urine samples: a comparison between nuclear and mitochondrial DNA markers. Int J Legal Med. 2005;120(2):67–72.CrossRefPubMedGoogle Scholar
- 22.Weedn VW, Baum H. DNA identification in mass fatality incidents. Am J For Med Pathol. 2011;32(4):393–7.CrossRefGoogle Scholar
- 23.Sensabaugh G, Kaye DH. Non-human DNA evidence. Jurimetrics. 1998;39(1):1–16.Google Scholar
- 24.Budowle B, Schultze SE, Breeze RG, Keim PS, Morse SA, editors. Microbial forensics. 2nd ed. Burlington, MA: Academic; 2011.Google Scholar
- 25.Gast AP, Relman DA, et al. Review of the scientific approaches used during the FBI’s investigation of the 2001 anthrax letters. Washington, DC: National Academies Press; 2001.Google Scholar
- 26.Tsongalis GJ, Wu AH, Silver H, Ricci A. Applications of forensic identity testing in the clinical laboratory. Am J Clin Pathol. 1999;112(1 Supp 1):S93–103.PubMedGoogle Scholar
- 27.Saks MJ, Koehler JJ. The coming paradigm shift in forensic identification science. Science. 2005;309(5736):892–5.CrossRefPubMedGoogle Scholar
- 28.Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503–17.CrossRefPubMedGoogle Scholar
- 29.Wyman AR, White R. A highly polymorphic locus in human DNA. Proc Natl Acad Sci U S A. 1980;77:6754–8.PubMedCentralCrossRefPubMedGoogle Scholar
- 30.Jeffreys AJ, Wilson V, Thein SL. Hypervariable “minisatellite” regions in human DNA. Nature. 1985;314:67–73.CrossRefPubMedGoogle Scholar
- 31.Jeffreys AJ, Wilson V, Thein SL. Individual specific “fingerprints” of human DNA. Nature. 1985;316:76–9.CrossRefPubMedGoogle Scholar
- 32.R. v. Pitchfork, EWCA Crim 963, Case No. 2008/04629/A1, 2009.Google Scholar
- 33.Wambaugh J. The blooding. New York, NY: Bantam Books; 1989.Google Scholar
- 34.Andrews v State, 533 So 841 (Fla Dist. Ct. App. 1988).Google Scholar
- 35.Commonwealth v Pestinikas, Ct of Common Pleas, Lackawanna Cnty, No. CR1019A-D/CR1020A-E, Dec. 2, 1988; 421 Pa Super. 371, 617 A2d 1339, 1343 (Pa Super. Ct. 1992).Google Scholar
- 36.Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–91.CrossRefPubMedGoogle Scholar
- 37.Puers C, Hammond HA, Jin L, Caskey T, Schumm JW. Identification of repeat sequence heterogeneity at the polymorphic short tandem repeat locus HUMTHO1 [AATG]n and reassignment of alleles in population analysis by using a locus-specific ladder. Am J Hum Genet. 1993;53:953–8.PubMedCentralPubMedGoogle Scholar
- 38.Lygo JE, Johnson PE, Holdaway DJ, et al. The validation of short tandem repeat (STR) loci for use in forensic casework. Int J Legal Med. 1994;107:77–89.CrossRefPubMedGoogle Scholar
- 39.Clayton TM, Whitaker JP, Fisher DL, et al. Further validation of a quadruplex STR DNA typing system: a collaborative effort to identify victims of a mass disaster. For Sci Int. 1995;76(l):17–25.Google Scholar
- 40.Butler JM, Reeder DJ. Short Tandem Repeat DNA Internet DataBase website. http://www.cstl.nist.gov/strbase/
- 41.Butler JM. Genetics and genomics of core short tandem repeat Loci used in human identity testing. J For Sci. 2006;51(2):253–65.Google Scholar
- 42.Butler JM, Schoske R, Vallone PM, Redman JW, Kline MC. Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations. J For Sci. 2003;48(4):1–4.Google Scholar
- 43.Hares DR. Expanding the CODIS core loci in the United States. For Sci Int Genetics. 2012;6(1):e52–4.CrossRefGoogle Scholar
- 44.Sullivan KM, Manucci A, Kimpton CP, Gill P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques. 1993;15:637–41.Google Scholar
- 45.Frances F, Portoles O, Gonzalez JI, et al. Amelogenin test: from forensics to biochemical genomics. Clin Chim Acta. 2007;386(1-2):53–6.CrossRefPubMedGoogle Scholar
- 46.Foster EA, Jobling MA, Taylor PG, et al. Jefferson fathered slave’s last child. Nature. 1998;396:27–8.CrossRefPubMedGoogle Scholar
- 47.Butler JM, Reeder DJ. Short Tandem Repeat DNA Internet DataBase website, Y-Chromosome STRs. http://www.cstl.nist.gov/strbase/y_strs.htm
- 48.Syvanen A-C. Accessing genetic variation: genotyping single nuclear polymorphisms. Nat Rev Genet. 2001;2:930–42.CrossRefPubMedGoogle Scholar
- 49.Sobrino B, Brion M, Carracedo A. SNPs in forensic genetics: a review on SNP typing methodologies. For Sci Int. 2005;154(2-3):181–94.Google Scholar
- 50.Kidd KK, Pakstis AJ, Speed WC, et al. Developing a SNP panel for forensic identification of individuals. For Sci Int. 2006;164(1):20–32.Google Scholar
- 51.Miller FJ, Rosenfeldt FL, Zhang C, et al. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003;31(11):e61.PubMedCentralCrossRefPubMedGoogle Scholar
- 52.Foran DR. 2006 The relative degradation of nuclear and mitochondrial DNA: an experimental approach. J For Sci. 2006;51:766–70.Google Scholar
- 53.Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.CrossRefPubMedGoogle Scholar
- 54.Andrews RM, Kubacka I, Chinnery PF, et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet. 1999;23(2):147.CrossRefPubMedGoogle Scholar
- 55.MITOMAP: A Human Mitochondrial Genome Database. http://www.mitomap.org, 2011.
- 56.Parsons TJ, Coble MD. Increasing the forensic discrimination of mitochondrial DNA testing through analysis of the entire mitochondrial DNA genome. Croat Med J. 2001;42(3):304–9.PubMedGoogle Scholar
- 57.Corach D, Sala A, Iannucci N, et al. Additional approaches to DNA typing of skeletal remains: the search for “missing” persons killed during the last dictatorship in Argentina. Electrophoresis. 1997;18:1608–12.CrossRefPubMedGoogle Scholar
- 58.Holland MM, Fisher DL, Mitchell LG, et al. Mitochondrial DNA sequence analysis of human skeletal remains: identification of remains from the Vietnam War. J For Sci. 1993;38(3):542–53.Google Scholar
- 59.Holland MM, Parsons TJ. Mitochondrial DNA sequence analysis: validation and use for forensic casework. For Sci Rev. 1999;11:21–50.Google Scholar
- 60.State of Tenn. Hamilton Cnty No. 234768, E2008-02392-CCA-R3-PC, No. 03C01-9705-CR-00164, 1999 WL 233592 (Tenn Ct Crim App,1996).Google Scholar
- 61.Gill P, Ivanov PL, Kimpton C, et al. Identification of the remains of the Romanov family by DNA analysis. Nat Genet. 1994;6:130–5.CrossRefPubMedGoogle Scholar
- 62.Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ. Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of Tsar Nicholas II. Nat Genet. 1996;12:417–20.CrossRefPubMedGoogle Scholar
- 63.Parsons TJ, Muniec DS, Sullivan K. A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet. 1997;15:363–8.CrossRefPubMedGoogle Scholar
- 64.Budowle B, Allard MW, Wilson MR, Chakraborty R. Forensics and mitochondrial DNA: applications, debates, and foundations. Ann Rev Genom Hum Genet. 2003;4:119–41.CrossRefGoogle Scholar
- 65.Pennisi E. Human genetic variation. Science. 2007;318:1842–3.CrossRefPubMedGoogle Scholar
- 66.Walsh S, Liu F, Ballantyne KN, et al. IrisPlex:A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. For Sci Int Genetics. 2011;5:170–80.CrossRefGoogle Scholar
- 67.Walsh S, Lindenbergh A, Zuniga SB, et al. Developmental validation of the IrisPlex system: determination of blue and brown iris colour for forensic intelligence. For Sci Int Genetics. 2011;5:464–71.CrossRefGoogle Scholar
- 68.Kayser M, Schneider PM. DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations. For Sci Int Genet. 2009;3:154–61.CrossRefGoogle Scholar
- 69.Kosoy R, Nassir R, Tian C, et al. Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. BMC Genet. 2009;10:39–52.PubMedCentralPubMedGoogle Scholar
- 70.Phillips C, Salas A, Sanchez JJ, et al. Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. For Sci Int Genetics. 2007;1:273–80.CrossRefGoogle Scholar
- 71.Newsome M. The inconvenient science of racial DNA profiling. Wired. Oct 5, 2007. Available at: http://www.wired.com/science/discoveries/news/2007/10/dnaprint?currentPage = all
- 72.The Genographic Project website; https://genographic.nationalgeographic.com/genographic/index.html
- 73.Koops B-J, Schellekens M. Forensic DNA phenotyping: regulatory issues. Columbia Sci Technol Law Rev. 2008;9:158–202.Google Scholar
- 74.Jun J, Han SH, Jeong T-J, et al. Wildlife forensics using mitochondrial DNA sequences: species identification based on hairs collected in the field and confiscated tanned Felidae leathers. Gene Genom. 2011;33:721–6.CrossRefGoogle Scholar
- 75.Melton T, Holland C. Routine forensic use of the mitochondrial 12S ribosomal RNA gene for species identification. J For Sci. 2007;52(6):1305–7.Google Scholar
- 76.Wells JD, Stevens JR. Application of DNA-based methods in forensic entomology. Annu Rev Entomol. 2008;53:103–20.CrossRefPubMedGoogle Scholar
- 77.Nock CJ, Waters DLE, Edwards MA, et al. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J. 2011;9:328–33.CrossRefPubMedGoogle Scholar
- 78.Hollingsworth PM, Graham SW, Little DP. Choosing and using a plant DNA barcode. PLoS One. 2011;6(5):e19254.PubMedCentralCrossRefPubMedGoogle Scholar
- 79.Coyle HM, Palmbach T, Juliano N, et al. An overview of methods for the identification and individualization of Marijuana. Croat Med J. 2003;44(3):315–21.Google Scholar
- 80.Lennard-Richard ML, Harper KA, Craig RL, et al. Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis. For Sci Int Genetics. 2012;6(4):452–60.CrossRefGoogle Scholar
- 81.Haas C, Muheim C, Kratzer A, et al. mRNA profiling for the identification of sperm and seminal plasma. For Sci Int Genet Suppl Ser. 2009;2:534–5.Google Scholar
- 82.NIJ Forensic DNA: Miniaturization and Automation website. http://www.nij.gov/topics/forensics/evidence/dna/research/miniaturization-automation.htm
- 83.Asplen C. Rapid DNA analysis is coming—rapidly. Forensic Mag. Dec 14, 2011. Available at: http://www.forensicmag.com/article/rapid-dna-analysis-coming-rapidly
- 84.Balding DJ. Weight-of-evidence for forensic DNA profiles. West Sussex, England: John Wiley & Sons; 2005.CrossRefGoogle Scholar
- 85.Buckleton J, Triggs CM, Walsh SJ, editors. Forensic DNA evidence interpretation. Boca Raton, FL: CRC Press; 2005.Google Scholar
- 86.Evett IW, Weir BS. Interpreting DNA evidence: statistical genetics for forensic scientists. Sunderland, MA: Sinauer Associates; 1998.Google Scholar
- 87.Chakraborty R, Kidd KK. The utility of DNA typing in forensic casework. Science. 1991;254:1735–9.CrossRefPubMedGoogle Scholar
- 88.Lander ES, Budowle B. DNA fingerprinting dispute laid to rest. Nature. 1994;371:735–8.CrossRefPubMedGoogle Scholar
- 89.Devlin B, Risch N, Roeder K. No excess of homozygosity at DNA fingerprint loci. Science. 1990;249:1416–20.CrossRefPubMedGoogle Scholar
- 90.Roeder K. DNA fingerprinting: a review of the controversy. Stat Sci. 1994;9(2):222–47.Google Scholar
- 91.McKusick VA, Lander ES, et al. DNA technology in forensic science (NRC I). Washington, DC: National Academy Press; 1992.Google Scholar
- 92.Crow JF, et al. The evaluation of forensic DNA evidence (NRC II). Washington, DC: National Academy Press; 1996.Google Scholar
- 93.Frequently Asked Questions (FAQs) on the CODIS Program and the National DNA Index System. FBI. http://www.fbi.gov/about-us/lab/codis/codis-and-ndis-fact-sheet
- 94.Maryland v King, 569 U.S. ___, 2013.Google Scholar
- 95.Bieber FR, Lazer D. Guilt by association. New Sci. 2004;184(2470):20.PubMedGoogle Scholar
- 96.Brown E. Study probes DNA search method that led to ‘Grim Sleeper’ suspect. Los Angeles Times, Aug 15, 2013, at: http://www.latimes.com/news/science/sciencenow/la-sci-sn-familial-dna-searches-california-20130814,0,5635600.story
- 97.Federal Legislation on Forensic DNA, NIJ website; http://www.dna.gov/statutes-caselaw/federal-legislation/
- 98.DNA Advisory Board Quality Assurance Standards for Forensic DNA Testing Laboratories, NIST website; http://www.cstl.nist.gov/strbase/dabqas.htm
- 99.Scientific Working Group on DNA Analysis Methods (SWGDAM) website; http://www.nfstc.org/pdi/Subject10/pdi_s10_m03_01_d.htm
- 100.Reeder DJ. Impact of DNA typing on standards and practice in the forensic community. Arch Pathol Lab Med. 1999;123:1063–5.PubMedGoogle Scholar
- 101.Coleman H, Swenson E. DNA in the courtroom: a trial watcher’s guide. Seattle, WA: Genelex Press; 1994.Google Scholar
- 102.Aronson JD. Genetic witness: science, law, and controversy in the making of DNA profiling. New Brunswick, NJ: Rutgers Univ Press; 2007.Google Scholar
- 103.Lynch M, Cole SA, McNally R, Jordan K. Truth machine: the contentious history of DNA fingerprinting. Chicago, IL: The Univ of Chicago Press; 2008.CrossRefGoogle Scholar
- 104.Calandro L, Reeder DJ, Cormier K. Evolution of DNA evidence for crime solving—a judicial and legislative history. Forensic Mag. January 6, 2005. Available at: http://www.forensicmag.com/article/evolution-dna-evidence-crime-solving-judicial-and-legislative-history?page=0,1
- 105.New York v Castro, 545 N.Y.S. 2d 985 (N.Y. Sup. Ct. 1989).Google Scholar
- 106.U.S. v Yee, 134 F.R.D. 161, 208 (N.D. Ohio 1991).Google Scholar
- 107.People v Hill, 107 Cal. Rptr. 2d 110, 89 Cal. App. 4th, 59-60 (Calif. 2001).Google Scholar
- 108.Lemour v State, 802 So. 2d 402 (Fla. Dist. Ct. App. 2001).Google Scholar
- 109.State v Butterfield, 27 P.3d 1133, 1144 (Utah 2001).Google Scholar
- 110.U.S. v Jenkins, 887 A.2d 1013, 1018 (D.C. 2005).Google Scholar
- 111.Kaye DH, Sensabaugh G. Reference guide on DNA identification evidence. Reference manual on scientific evidence. 3rd ed. Washington, DC: National Academies Press; 2011. p. 129–210.Google Scholar
- 112.Connors E, Lundregan T, Miller N, McEwen T. Convicted by juries, exonerated by science: case studies in the use of DNA evidence to establish innocence after trial. NCJ 161258. Washington, DC: National Institute of Justice; 1996.Google Scholar
- 113.Scheck B, Neufeld P, Dwyer J. Actual innocence: when justice goes wrong and how to make it right. New York, NY: Signet Books; 2001.Google Scholar
- 114.Innocence Project website (Benjamin Cardozo Law School); http://www.innocenceproject.org