Skip to main content

Molecular Detection of Circulating Tumor Cells and Cell-Free Nucleic Acids

  • Chapter
Molecular Pathology in Clinical Practice

Abstract

One of the key roles performed by pathologists is determination of the presence or absence of tumor in clinical samples. This is the basis for most approaches to staging, monitoring response to treatment, and detecting relapse of neoplasia and, as such, is a critical step in determining the course of patient management. Pathologists have utilized a variety of methods, continually seeking to improve assay performance and thus patient outcome. The literature reflects this quest, including reports assessing the increased sensitivity afforded by immunohistochemistry (IHC), flow cytometry, and, more recently, molecular approaches for the detection of tumor cells and nucleic acids in blood and bone marrow samples. The goal is, of course, the more accurate detection of disease spread and, ultimately, better patient care.

This chapter addresses some of the recent work in tumor detection, focusing on molecular and, to some degree, immunofluorescent approaches for the detection of circulating tumor cells and free nucleic acids in clinical samples. A synopsis of the hundreds of articles published to date is beyond the scope of this chapter; instead, more general issues and findings are addressed, along with presentation of selected work. Several reviews are available for more detailed reading (Alix-Panabières and Pantel, Clin Chem 59:110–118, 2013; Pinzani et al., Methods 50:302–307, 2010; Pratt et al. Chem Eng Sci 66:1508–1522, 2011; Schwarzenbach et al., Nat Rev Clin Oncol 11:145–156, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59:110–8.

    Article  PubMed  Google Scholar 

  2. Pinzani P, Salvianti F, Pazzagli M, et al. Circulating nucleic acids in cancer and pregnancy. Methods. 2010;50:302–7.

    Article  CAS  PubMed  Google Scholar 

  3. Pratt ED, Huang C, Hawkins BG, et al. Rare cell capture in microfluidic devices. Chem Eng Sci. 2011;66:1508–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Schwarzenbach H, Nishida N, Calin GA, et al. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11:145–56.

    Article  CAS  PubMed  Google Scholar 

  5. Bauer KD, de la Torre-Bueno J, Diel IJ, et al. Reliable and sensitive analysis of occult bone marrow metastases using automated cellular imaging. Clin Cancer Res. 2000;6:3552–9.

    CAS  PubMed  Google Scholar 

  6. Tvasellas G, Huang A, McCullough T, et al. Flow cytometry correlates with RT-PCR for detection of spiked but not circulating colorectal cancer cells. Clin Exp Metastasis. 2002;19:495–502.

    Article  Google Scholar 

  7. Smith B, Selby P, Southgate J, et al. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet. 1991;338:1227–9.

    Article  CAS  PubMed  Google Scholar 

  8. Mellado B, del Carmen Vela M, Colomer D, et al. Tyrosinase mRNA in blood of patients with melanoma treated with adjuvant interferon. Clin Oncol. 2002;20:4032–9.

    Article  CAS  Google Scholar 

  9. Katz AE, de Vries GM, Begg MD, et al. Enhanced reverse transcriptase-polymerase chain reaction for prostate specific antigen as an indicator of true pathologic stage in patients with prostate cancer. Cancer. 1995;75:1642–8.

    Article  CAS  PubMed  Google Scholar 

  10. Crisan D, Ruark DS, Decker DA, et al. Detection of circulating epithelial cells after surgery for benign breast disease. Mol Diagn. 2000;5:33–8.

    CAS  PubMed  Google Scholar 

  11. Decot V, Latget-Cannard V, Lecompte T, et al. Chimerism analysis following nonmyeloablative stem cell transplantation using a new cell subset separation method: Robosep™. Biomed Mater Eng. 2000;18:19–36.

    Google Scholar 

  12. Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with non-malignant diseases. Clin Cancer Res. 2004;47:6897–904.

    Article  Google Scholar 

  13. Cristofanelli M, Hayes DF, Budd GT, et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed breast cancer. J Clin Oncol. 2005;23:1420–30.

    Article  Google Scholar 

  14. Issadore D, Chung J, Shao H, et al. Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci Transl Med. 2012;4:141ra92.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Yang L, Lang JC, Balasubramanian P, et al. Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cell. Biotechnol Bioeng. 2008;102:521–34.

    Article  Google Scholar 

  16. Lin HK, Zheng S, Williams AJ, et al. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res. 2010;16:5011–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zheng S, Lin HK, Lu B, et al. 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed Microdevices. 2011;13:203–13.

    Article  PubMed  Google Scholar 

  18. Bhagat AAS, Hou HW, Li LD, et al. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip. 2011;11:1870–8.

    Article  CAS  PubMed  Google Scholar 

  19. Moon HS, Kwon K, Kim SI, et al. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip. 2011;11:1118–25.

    Article  CAS  PubMed  Google Scholar 

  20. Sequist LV, Nagrath S, Toner M, et al. The CTC-chip: an exciting new tool to detect circulating tumor cells in lung cancer patients. J Thorac Oncol. 2009;4:281.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hoon DS, Wang Y, Dale PS, et al. Detection of occult melanoma cells in blood with a multiple marker polymerase chain reaction assay. J Clin Oncol. 1995;13:2109–16.

    CAS  PubMed  Google Scholar 

  22. Kang Y, Zhang J, Sun P, et al. Circulating cell-free human telomerase reverse transcriptase mRNA in plasma and its potential diagnostic and prognostic value for gastric cancer. Int J Clin Oncol. 2012;18:478–86.

    Article  PubMed  Google Scholar 

  23. Olsson CA, de Vries GM, Benson MC, et al. The use of RT-PCR for prostate-specific antigen assay to predict potential surgical failures before radical prostatectomy: molecular staging of prostate cancer. Br J Urol. 1996;77:411–7.

    Article  CAS  PubMed  Google Scholar 

  24. Soeth E, Roder C, Juhl H, et al. The detection of disseminated tumor cells in bone marrow from colorectal cancer patients by a cytokeratin 20 specific nested reverse transcriptase—polymerase chain reaction is related to the stage of disease. Int J Cancer. 1996;69:278–82.

    Article  CAS  PubMed  Google Scholar 

  25. Vogel I, Kalthoff H. Disseminated tumour cells. Their detection and significance for prognosis of gastrointestinal and pancreatic carcinomas. Virchows Arch. 2001;439:109–17.

    Article  CAS  PubMed  Google Scholar 

  26. Riethdorf S, Müller V, Zhang L, et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro Trial. Clin Cancer Res. 2010;10:2634–45.

    Article  Google Scholar 

  27. Bianco Jr FJ, Powell IJ, Cher ML, et al. Presence of circulating prostate cancer cells in African American males adversely affects survival. Urol Oncol. 2002;7:147–52.

    Article  PubMed  Google Scholar 

  28. Franken B, de Groot MR, Mastboom WJB, et al. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res. 2012;14:R133.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cohen SJ, Punt CJA, Ianotti N, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:3213–21.

    Article  PubMed  Google Scholar 

  30. Dawson SJ, Tsui DWY, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368:1199–209.

    Article  CAS  PubMed  Google Scholar 

  31. Miyamoto DT, Lee RJ, Stott SL, et al. Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov. 2012;2:995–1003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Braun S, Pantel K, Muller P, et al. Cytokeratin-positive cells in the bone marrow and survival or patients with stage I, II, or III breast cancer. N Engl J Med. 2000;342:525–33.

    Article  CAS  PubMed  Google Scholar 

  33. Wood Jr DP, Banerjee M. Presence of circulating prostate cells in the bone marrow of patients undergoing radical prostatectomy is predictive of disease-free survival. J Clin Oncol. 1997;15:3451–7.

    PubMed  Google Scholar 

  34. Liefers GJ, Cleton-Jansen AM, van de Velde CJH, et al. Micrometastases and survival in stage II colorectal cancer. N Engl J Med. 1998;339:223–8.

    Article  CAS  PubMed  Google Scholar 

  35. Pantel K, Deneve E, Nocca D, et al. Circulating epithelial cells in patients with benign colon diseases. Clin Chem. 2012;58:936–40.

    Article  CAS  PubMed  Google Scholar 

  36. Mandel P, Metais P. Les acides nucleiques du plasma sanguin chez l’homme. CR Acad Sci Paris. 1948;142:241–3.

    CAS  Google Scholar 

  37. Ariga H, Ohto H, Busch MP, et al. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion. 2002;41:1524–30.

    Article  Google Scholar 

  38. Ehrich M, Deciu C, Zwielhofer T, et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: a study in a clinical setting. Am J Obstet Gynecol. 2011;204:205.e1–11.

    Article  Google Scholar 

  39. Taback B, O’Day SJ, Hoon DSB. Quantification of circulating DNA in the plasma and serum of cancer patients. Ann N Y Acad Sci. 2004;1022:17–24.

    Article  CAS  PubMed  Google Scholar 

  40. Thu KL, Vucic EA, Chari R, et al. Lung adenocarcinoma of never smokers and smokers harbor differential regions of genetic alteration and exhibit different levels of genomic instability. PLoS One. 2012;7:e33003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Welch JS, Link DC. Genomics of AML: clinical applications of next-generation sequencing. Hematology Am Soc Hematol Educ Program. 2011;2011:30–5.

    Article  PubMed  Google Scholar 

  42. Forshew T, Murtaza M, Parkinson C, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4:136ra68.

    Article  PubMed  Google Scholar 

  43. Shapiro B, Chakrabarty M, Cohn EM, et al. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer. 1983;51:2116–20.

    Article  CAS  PubMed  Google Scholar 

  44. Giacona MB, Ruben GC, Iczkowski KA, et al. Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas. 1998;17:89–97.

    Article  CAS  PubMed  Google Scholar 

  45. Peinado H, Aleckovic M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10:1470–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Rani S, O’Brien K, Kelleher FC, et al. Isolation of exosomes for subsequent mRNA, MicroRNA, and protein profiling. Methods Mol Biol. 2011;784:181–95.

    Article  CAS  PubMed  Google Scholar 

  48. Chan KCA, Jiang P, Zheng YWL, et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem. 2013;59:211–24.

    Article  CAS  PubMed  Google Scholar 

  49. Board RE, Eillison G, Orr MCM, et al. Detection of BRAF mutations in the tumor and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer. 2009;101:1724–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4:162ra154.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Osburne CM, Hardisty E, Devers P, et al. Discordant noninvasive prenatal testing results in a patient subsequently diagnosed with metastatic disease. Prenat Diagn. 2013;33:609–11.

    Article  Google Scholar 

  52. García V, García JM, Peña C, et al. Free circulating mRNA in plasma from breast cancer patients and clinical outcome. Cancer Lett. 2008;263:312–20.

    Article  PubMed  Google Scholar 

  53. March-Villalba JA, Martinez-Jabaloyas JM, Herrero MJ, et al. Cell-free circulating plasma hTERT mRNA is a useful marker for prostate cancer diagnosis and is associated with poor prognosis tumor characteristics. PLoS One. 2012;78:e43470.

    Article  Google Scholar 

  54. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:295–304.

    Article  Google Scholar 

  55. Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–37.

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Chen J, Chang P, et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res. 2009;2:807–13.

    Article  CAS  Google Scholar 

  57. Asaga S, Kuo C, Nguyen T, et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57:84–91.

    Article  CAS  PubMed  Google Scholar 

  58. Kirschner MB, Kao SC, Edelman JJ, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One. 2011;6:e24145.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirali M. Patel M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patel, N.M., Kaul, K. (2016). Molecular Detection of Circulating Tumor Cells and Cell-Free Nucleic Acids. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics