Skip to main content

Abstract

Pharmacogenetics is the study of the genetic determinants of drug response variability. Some pharmacogenetic tests can be used to explain or predict adverse events and/or non-responsiveness to therapy. The goal and promise of clinical pharmacogenetic testing is to deliver the right drug to the right person at the right dose. As such, when a genetic variant directly involved in drug response variability is identified in a patient prior to initiating therapy, adverse reactions, excessive use of ineffective drugs, or ineffective dosing can hopefully be prevented. Despite challenges to demonstrate clinical utility, clinical tests are currently available for selected genes where clinical validity has largely been established. This chapter describes pharmacogenetic applications for which clinical tests are currently available, including CYP2D6, CYP2C19, CYP2C9 and VKORC1, TPMT, and UGT1A1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higgins MJ, Stearns V. CYP2D6 polymorphisms and tamoxifen metabolism: clinical relevance. Curr Oncol Rep. 2010;12(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  2. Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, et al. Genetic polymorphisms and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety. Br J Pharmacol. 2010;160(4):919–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. D’Empaire I, Guico-Pabia CJ, Preskorn SH. Antidepressant treatment and altered CYP2D6 activity: are pharmacokinetic variations clinically relevant? J Psychiatr Pract. 2011;17(5):330–9.

    Article  PubMed  Google Scholar 

  4. Rau T, Wuttke H, Michels LM, Werner U, Bergmann K, Kreft M, et al. Impact of the CYP2D6 genotype on the clinical effects of metoprolol: a prospective longitudinal study. Clin Pharmacol Ther. 2009;85(3):269–72.

    Article  CAS  PubMed  Google Scholar 

  5. Cacabelos R, Hashimoto R, Takeda M. Pharmacogenomics of antipsychotics efficacy for schizophrenia. Psychiatry Clin Neurosci. 2011;65(1):3–19.

    Article  CAS  PubMed  Google Scholar 

  6. Ong FS, Deignan JL, Kuo JZ, Bernstein KE, Rotter JI, Grody WW, et al. Clinical utility of pharmacogenetic biomarkers in cardiovascular therapeutics: a challenge for clinical implementation. Pharmacogenomics. 2012;13(4):465–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Michelson D, Read HA, Ruff DD, Witcher J, Zhang S, McCracken J. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry. 2007;46(2):242–51.

    Article  PubMed  Google Scholar 

  8. Owen RP, Sangkuhl K, Klein TE, Altman RB. Cytochrome P450 2D6. Pharmacogenet Genomics. 2009;19(7):559–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Brauch H, Murdter TE, Eichelbaum M, Schwab M. Pharmacogenomics of tamoxifen therapy. Clin Chem. 2009;55(10):1770–82.

    Article  CAS  PubMed  Google Scholar 

  10. Hertz DL, McLeod HL, Irvin Jr WJ. Tamoxifen and CYP2D6: a contradiction of data. Oncologist. 2012;17(5):620–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Crews KR, Gaedigk A, Dunnenberger HM, Klein TE, Shen DD, Callaghan JT, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther. 2012;91(2):321–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95(4):376–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hicks JK, Swen JJ, Thorn CF, Sangkuhl K, Kharasch ED, Ellingrod VL, et al. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther. 2013;93(5):402–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. de Leon J. AmpliChip CYP450 test: personalized medicine has arrived in psychiatry. Expert Rev Mol Diagn. 2006;6(3):277–86.

    Article  PubMed  Google Scholar 

  15. Melis R, Lyon E, McMillin GA. Determination of CYP2D6, CYP2C9 and CYP2C19 genotypes with Tag-It mutation detection assays. Expert Rev Mol Diagn. 2006;6(6):811–20.

    Article  CAS  PubMed  Google Scholar 

  16. Savino M, Seripa D, Gallo AP, Garrubba M, D’Onofrio G, Bizzarro A, et al. Effectiveness of a high-throughput genetic analysis in the identification of responders/non-responders to CYP2D6-metabolized drugs. Clin Lab. 2011;57(11–12):887–93.

    CAS  PubMed  Google Scholar 

  17. Sistonen J, Fuselli S, Levo A, Sajantila A. CYP2D6 genotyping by a multiplex primer extension reaction. Clin Chem. 2005;51(7):1291–5.

    Article  CAS  PubMed  Google Scholar 

  18. Ramamoorthy A, Skaar TC. Gene copy number variations: it is important to determine which allele is affected. Pharmacogenomics. 2011;12(3):299–301.

    Article  PubMed  Google Scholar 

  19. Lyon E, Gastier Foster J, Palomaki GE, Pratt VM, Reynolds K, Sabato MF, et al. Laboratory testing of CYP2D6 alleles in relation to tamoxifen therapy. Genet Med. 2012;14(12):990–1000.

    Article  CAS  PubMed  Google Scholar 

  20. Scott SA, Sangkuhl K, Shuldiner AR, Hulot JS, Thorn CF, Altman RB, et al. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19. Pharmacogenet Genomics. 2012;22(2):159–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Shuldiner AR, O’Connell JR, Bliden KP, Gandhi A, Ryan K, Horenstein RB, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302(8):849–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006;79(1):103–13.

    Article  CAS  PubMed  Google Scholar 

  23. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Schroth W, Antoniadou L, Fritz P, Schwab M, Muerdter T, Zanger UM, et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol. 2007;25(33):5187–93.

    Article  CAS  PubMed  Google Scholar 

  25. Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H, et al. Pharmacogenetics: from bench to byte—an update of guidelines. Clin Pharmacol Ther. 2011;89(5):662–73.

    Article  CAS  PubMed  Google Scholar 

  26. Martis S, Peter I, Hulot JS, Kornreich R, Desnick RJ, Scott SA. Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J. 2013;13(4):369–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sibbing D, Gebhard D, Koch W, Braun S, Stegherr J, Morath T, et al. Isolated and interactive impact of common CYP2C19 genetic variants on the antiplatelet effect of chronic clopidogrel therapy. J Thromb Haemost. 2010;8(8):1685–93.

    Article  CAS  PubMed  Google Scholar 

  28. Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics. 2002;12(3):251–63.

    Article  CAS  PubMed  Google Scholar 

  29. Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353(9154):717–9.

    Article  CAS  PubMed  Google Scholar 

  30. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–8.

    Article  CAS  PubMed  Google Scholar 

  31. Scott SA, Khasawneh R, Peter I, Kornreich R, Desnick RJ. Combined CYP2C9, VKORC1 and CYP4F2 frequencies among racial and ethnic groups. Pharmacogenomics. 2010;11(6):781–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Owen RP, Gong L, Sagreiya H, Klein TE, Altman RB. VKORC1 pharmacogenomics summary. Pharmacogenet Genomics. 2010;20(10):642–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352(22):2285–93.

    Article  CAS  PubMed  Google Scholar 

  34. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–33.

    Article  CAS  PubMed  Google Scholar 

  35. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J. 2005;5(4):262–70.

    Article  CAS  PubMed  Google Scholar 

  36. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.

    Article  Google Scholar 

  38. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115(18):3827–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lubitz SA, Scott SA, Rothlauf EB, Agarwal A, Peter I, Doheny D, et al. Comparative performance of gene-based warfarin dosing algorithms in a multiethnic population. J Thromb Haemost. 2010;8(5):1018–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Finkelman BS, Gage BF, Johnson JA, Brensinger CM, Kimmel SE. Genetic warfarin dosing: tables versus algorithms. J Am Coll Cardiol. 2011;57(5):612–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med. 2013;369(24):2294–303.

    Article  CAS  PubMed  Google Scholar 

  42. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369(24):2283–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Zineh I, Pacanowski M, Woodcock J. Pharmacogenetics and coumarin dosing—recalibrating expectations. N Engl J Med. 2013;369(24):2273–5.

    Article  CAS  PubMed  Google Scholar 

  44. Scott SA, Lubitz SA. Warfarin pharmacogenetic trials: is there a future for pharmacogenetic-guided dosing? Pharmacogenomics. 2014;15(6):719–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. King CR, Porche-Sorbet RM, Gage BF, Ridker PM, Renaud Y, Phillips MS, et al. Performance of commercial platforms for rapid genotyping of polymorphisms affecting warfarin dose. Am J Clin Pathol. 2008;129(6):876–83.

    Article  CAS  PubMed  Google Scholar 

  46. Flockhart DA, O’Kane D, Williams MS, Watson MS, Gage B, Gandolfi R, et al. Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet Med. 2008;10(2):139–50.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90(4):625–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Meeker ND, Yang JJ, Schiffman JD. Pharmacogenomics of pediatric acute lymphoblastic leukemia. Expert Opin Pharmacother. 2010;11(10):1621–32.

    Article  CAS  PubMed  Google Scholar 

  49. Tani C, Mosca M, Colucci R, Gori G, d’Ascanio A, Ghisu N, et al. Genetic polymorphisms of thiopurine S-methyltransferase in a cohort of patients with systemic autoimmune diseases. Clin Exp Rheumatol. 2009;27(2):321–4.

    CAS  PubMed  Google Scholar 

  50. Nguyen TM, Daubard M, Le Gall C, Larger M, Lachaux A, Boulieu R. Monitoring of azathioprine metabolites in pediatric patients with autoimmune hepatitis. Ther Drug Monit. 2010;32(4):433–7.

    Article  CAS  PubMed  Google Scholar 

  51. Smith MA, Marinaki AM, Sanderson JD. Pharmacogenomics in the treatment of inflammatory bowel disease. Pharmacogenomics. 2010;11(3):421–37.

    Article  CAS  PubMed  Google Scholar 

  52. Teml A, Schaeffeler E, Herrlinger KR, Klotz U, Schwab M. Thiopurine treatment in inflammatory bowel disease: clinical pharmacology and implication of pharmacogenetically guided dosing. Clin Pharmacokinet. 2007;46(3):187–208.

    Article  CAS  PubMed  Google Scholar 

  53. Anglicheau D, Legendre C, Thervet E. Pharmacogenetics in solid organ transplantation: present knowledge and future perspectives. Transplantation. 2004;78(3):311–5.

    Article  CAS  PubMed  Google Scholar 

  54. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther. 2011;89(3):387–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Yates CR, Krynetski EY, Loennechen T, Fessing MY, Tai HL, Pui CH, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med. 1997;126(8):608–14.

    Article  CAS  PubMed  Google Scholar 

  56. Evans WE, Hon YY, Bomgaars L, Coutre S, Holdsworth M, Janco R, et al. Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol. 2001;19(8):2293–301.

    CAS  PubMed  Google Scholar 

  57. Okada Y, Nakamura K, Wada M, Nakamura T, Tsukamoto N, Nojima Y, et al. Genotyping of thiopurine methyltransferase using pyrosequencing. Biol Pharm Bull. 2005;28(4):677–81.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou S. Clinical pharmacogenomics of thiopurine S-methyltransferase. Curr Clin Pharmacol. 2006;1(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  59. Donnan JR, Ungar WJ, Mathews M, Rahman P. Systematic review of thiopurine methyltransferase genotype and enzymatic testing strategies. Ther Drug Monit. 2011;33(2):192–9.

    CAS  PubMed  Google Scholar 

  60. Hindorf U, Appell ML. Genotyping should be considered the primary choice for pre-treatment evaluation of thiopurine methyltransferase function. J Crohns Colitis. 2012;6(6):655–9.

    Article  PubMed  Google Scholar 

  61. Marques SC, Ikediobi ON. The clinical application of UGT1A1 pharmacogenetic testing: gene-environment interactions. Hum Genomics. 2010;4(4):238–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Perera MA, Innocenti F, Ratain MJ. Pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 polymorphisms: are we there yet? Pharmacotherapy. 2008;28(6):755–68.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang D, Zhang D, Cui D, Gambardella J, Ma L, Barros A, et al. Characterization of the UDP glucuronosyltransferase activity of human liver microsomes genotyped for the UGT1A1*28 polymorphism. Drug Metab Dispos. 2007;35(12):2270–80.

    Article  CAS  PubMed  Google Scholar 

  64. Strassburg CP. Pharmacogenetics of Gilbert’s syndrome. Pharmacogenomics. 2008;9(6):703–15.

    Article  CAS  PubMed  Google Scholar 

  65. Innocenti F, Iyer L, Ratain MJ. Pharmacogenetics of anticancer agents: lessons from amonafide and irinotecan. Drug Metab Dispos. 2001;29(4 Pt 2):596–600.

    CAS  PubMed  Google Scholar 

  66. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22(8):1382–8.

    Article  CAS  PubMed  Google Scholar 

  67. Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst. 2007;99(17):1290–5.

    Article  CAS  PubMed  Google Scholar 

  68. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: can UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? Genet Med. 2009;11(1):15–20.

    Article  Google Scholar 

  69. Scott SA. Clinical pharmacogenomics: opportunities and challenges at point of care. Clin Pharmacol Ther. 2013;93(1):33–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Scott SA. Personalizing medicine with clinical pharmacogenetics. Genet Med. 2011;13(12):987–95.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL, Ramirez AH, et al. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin Pharmacol Ther. 2012;92(1):87–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. O’Donnell PH, Bush A, Spitz J, Danahey K, Saner D, Das S, et al. The 1200 patients project: creating a new medical model system for clinical implementation of pharmacogenomics. Clin Pharmacol Ther. 2012;92(4):446–9.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Gottesman O, Scott SA, Ellis SB, Overby CL, Ludtke A, Hulot JS, et al. The CLIPMERGE PGx Program: clinical implementation of personalized medicine through electronic health records and genomics-pharmacogenomics. Clin Pharmacol Ther. 2013;94(2):214–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Rasmussen-Torvik LJ, Stallings SC, Gordon AS, Almoguera B, Basford MA, Bielinski SJ, et al. Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin Pharmacol Ther. 2014;96(4):482–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Lyon Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scott, S.A., Lyon, E. (2016). Pharmacogenetics. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics