Skip to main content

Fibroblast Growth Factor Receptor and Related Skeletal Disorders

  • Chapter
Molecular Pathology in Clinical Practice

Abstract

Osteochondrodysplasias are a heterogeneous group of disorders. To date, more than 450 skeletal conditions have been characterized. Many of the skeletal dysplasias arise during the prenatal period and are able to be diagnosed by ultrasonography. Fibroblast growth factor (FGF) signaling, including the ligands and their receptors, plays an important role in the function of chondrocytes and osteocytes that contribute to bone patterning. Two of the most common types of skeletal dysplasias are achondroplasia and thanatophoric dysplasia, emphasizing the importance of FGF signaling in skeletal development. This chapter focuses on the many distinct skeletal disorders arising from mutations in the FGF receptor (FGFR) family of genes that are responsible for forms of syndromic and non-syndromic craniosynostosis and chondrodysplasias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Superti-Furga A, Steinmann B, Gitzelmann R, Eich G, Giedion A, Bucher HU, Wisser J. A glycine 375-to-cysteine substitution in the transmembrane domain of the fibroblast growth factor receptor-3 in a newborn with achondroplasia. Eur J Pediatr. 1995;154(3):215–9.

    Google Scholar 

  2. Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Sillence D, Spranger J, Unger S, Zabel B, Superti-Furga A. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155(5):943–68.

    Google Scholar 

  3. Krakow D. Skeletal Dysplasias. Clin Perinatol. 2015;42:301–19.

    Google Scholar 

  4. Orioli IM, Castilla EE, Barbosa-Neto JG. The birth prevalence rates for the skeletal dysplasias. J Med Genet. 1986;23(4):328–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Stoll C, Dott B, Roth M-P, Alembik Y. Birth prevalence rates of skeletal dysplasias. Clin Genet. 1989;35(2):88–92.

    Article  CAS  PubMed  Google Scholar 

  6. Krakow D, Alanay Y, Rimoin LP, Lin V, Wilcox WR, Lachman RS, Rimoin DL. Evaluation of prenatal-onset osteochondrodysplasias by ultrasonography: A retrospective and prospective analysis. Am J Med Genet A. 2008;146A(15):1917–24.

    Google Scholar 

  7. Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–66.

    Google Scholar 

  8. Spivak-Kroizman T, Lemmon MA, Dikic I, Ladbury JE, Pinchasi D, Huang J, Jaye M, Crumley G, Schlessinger J, Lax I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell. 1994;79(6):1015–24.

    Google Scholar 

  9. Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 2005;16(2):107–37.

    Article  CAS  PubMed  Google Scholar 

  10. Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M. Structural basis for FGF receptor dimerization and activation. Cell. 1999;98(5):641–50.

    Article  CAS  PubMed  Google Scholar 

  11. Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000;407(6807):1029–34.

    Article  CAS  PubMed  Google Scholar 

  12. Givol D, Yayon A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J. 1992;6(15):3362–9.

    CAS  PubMed  Google Scholar 

  13. Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y, Yayon A, Givol D, Lonai P. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol. 1993;158(2):475–86.

    Google Scholar 

  14. Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, Le Merrer M, Munnich A, Vekemans M, Bonaventure J. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev. 1998;77(1):19–30.

    Google Scholar 

  15. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  16. Webster MK, Donoghue DJ. Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J. 1996;15(3):520–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Muenke M, Gripp K, McDonald-McGinn D, Gaudenz K, Whitaker L, Bartlett S, Markowitz R, Robin N, Nwokoro N, Mulvihill J, Losken H, Mulliken J, Guttmacher A, Wilroy L, Clarke R, Hollway G, Adès L, Haan E, Mulley J, Cohen M, Bellus G, Francomano C, Moloney D, Wall S, Wilkie A, Zackai E. A unique point mutation in the fibroblast growth factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. Am J Hum Genet. 1997;60(3):555–64.

    Google Scholar 

  18. Cohen MM. Some chondrodysplasias with short limbs: molecular perspectives. Am J Med Genet. 2002;112(3):304–13.

    Article  PubMed  Google Scholar 

  19. Legeai-Mallet L, Benoist-Lasselin C, Delezoide A-L, Munnich A, Bonaventure J. Fibroblast growth factor receptor 3 mutations promote apoptosis but do not alter chondrocyte proliferation in thanatophoric dysplasia. J Biol Chem. 1998;273(21):13007–14.

    Article  CAS  PubMed  Google Scholar 

  20. Legeai-Mallet L, Benoist-Lasselin C, Munnich A, Bonaventure J. Overexpression of FGFR3, Stat1, Stat5 and p21Cip1 correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias. Bone. 2004;34:26–36.

    Article  CAS  PubMed  Google Scholar 

  21. Holmes G, Rothschild G, Roy UB, Deng C-X, Mansukhani A, Basilico C. Early onset of craniosynostosis in an apert mouse model reveals critical features of this pathology. Dev Biol. 2009;328:273–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Monsonego-oran E, Adar R, Feferman T, Segev O, Yayon A. The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation. Mol Cell Biol. 2000;20(2):516–22.

    Article  Google Scholar 

  23. Sorokin A, Lemmon MA, Ullrich A, Schlessinger J. Stabilization of an active dimeric form of the epidermal growth factor receptor by introduction of an inter-receptor disulfide bond. J Biol Chem. 1994;269(13):9752–9.

    Google Scholar 

  24. Hart KC, Robertson SC, Donoghue DJ. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, Stat activation, and phosphatidylinositol 3-kinase activation. Mol Biol Cell. 2001;12:931–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Ratisoontorn C, Fan GF, McEntee K, Nah DD. Activating (P253R, C278F) and dominant negative mutations of FGFR2: differential effects on calvarial bone cell proliferation, differentiation, and mineralization. Connect Tissue Res. 2003;44 Suppl 1:292–7.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen MM. No man’s craniosynostosis: the arcana of sutural knowledge. J Craniofac Surg. 2012;23(1):338–42. 310.1097/SCS.1090b1013e318241dbc318244.

    Article  PubMed  Google Scholar 

  27. Sperber G, Sperber S, Guttmann G. Craniofacial embryogenetics and development. Shelton, CT: People’s Medical Publishing House; 2010.

    Google Scholar 

  28. Ornitz DM. Regulation of chondrocyte growth and differentiation by fibroblast growth factor receptor 3. Novartis Found Symp. 2001;232:63–80, 272–282.

    Google Scholar 

  29. Johnson D, Wall SA, Mann S, Wilkie AOM. A novel mutation, Ala315Ser, in FGFR2: a gene-environment interaction leading to craniosynostosis? Eur J Hum Genet. 2000;8(8):571–7.

    Article  CAS  PubMed  Google Scholar 

  30. Kress W, Petersen B, Collmann H, Grimm T. An unusual FGFR1 mutation (fibroblast growth factor receptor 1 mutation) in a girl with non-syndromic trigonocephaly. Cytogenet Cell Genet. 2000;91(1-4):138–40.

    Google Scholar 

  31. Barroso E, Pérez-Carrizosa V, García-Recuero I, Glucksman MJ, Wilkie AO, García-Minaur S, Heath KE. Mild isolated craniosynostosis due to a novel FGFR3 mutation, p.Ala334Thr. Am J Med Genet. A. 2011;155(12):3050–3.

    Google Scholar 

  32. Wilkie AOM, Byren JC, Hurst JA, Jayamohan J, Johnson D, Knight SJL, Lester T, Richards PG, Twigg SRF, Wall SA. Prevalence and complications of single-gene and chromosomal disorders in craniosynostosis. Pediatrics. 2010;126(2):e391–400.

    Google Scholar 

  33. Levi B, Wan DC, Wong VW, Nelson E, Hyun J, Longaker MT. Cranial suture biology: from pathways to patient care. J Craniofac Surg. 2012;23(1):13–9. doi:10.1097/SCS.1090b1013e318240c318246c318240.

    Article  PubMed  Google Scholar 

  34. Wilkin DJ, Szabo JK, Cameron R, Henderson S, Bellus GA, Mack ML, Kaitila I, Loughlin J, Munnich A, Sykes B, Bonaventure J, Francomano CA. Mutations in fibroblast growth-factor receptor 3 in sporadic cases of achondroplasia occur exclusively on the paternally derived chromosome. Am J Hum Genet. 1998;63(3):711–6.

    Google Scholar 

  35. Glaser RL, Jiang W, Boyadjiev SA, Tran AK, Zachary AA, Van Maldergem L, Johnson D, Walsh S, Oldridge M, Wall SA, Wilkie AOM, Jabs EW. Paternal origin of FGFR2 mutations in sporadic cases of Crouzon syndrome and Pfeiffer syndrome. Am J Hum Genet. 2000;66(3):768–77.

    Google Scholar 

  36. Krakow D, Williams J, Poehl M, Rimoin DL, Platt LD. Use of three-dimensional ultrasound imaging in the diagnosis of prenatal-onset skeletal dysplasias. Ultrasound Obstet Gynecol. 2003;21(5):467–72.

    Article  CAS  PubMed  Google Scholar 

  37. 1000 Genomes Consortium. A map of human genome variation from population scale sequencing. Nature. 2010;467(7319):1061–73.

    Article  Google Scholar 

  38. Shendure J. Next-generation human genetics. Genome Biol. 2011;12(9):408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(8):1073–81.

    Article  CAS  PubMed  Google Scholar 

  40. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.

    Google Scholar 

  41. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7(8):575–6.

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Park WJ, Pyeritz RE, Jabs EW. Effect on splicing of a silent FGFR2 mutation in Crouzon syndrome. Nat Genet. 1995;9:232–3.

    Article  PubMed  Google Scholar 

  43. Cornejo-Roldan LR, Roessler E, Muenke M. Analysis of the mutational spectrum of the FGFR2 gene in Pfeiffer syndrome. Hum Genet. 1999;104(5):425–31.

    Article  CAS  PubMed  Google Scholar 

  44. Kan R, Twigg SRF, Berg J, Wang L, Jin F, Wilkie AOM. Expression analysis of an FGFR2 IIIc 5′ splice site mutation (1084+3A→G). J Med Genet. 2004;41(8):e108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Traynis I, Bernstein JA, Gardner P, Schrijver I. Analysis of the alternative splicing of an FGFR2 transcript due to a novel 5′ splice site mutation (1084+1G>A): case report. Cleft Palate Craniofac J. 2011;49(1):104–8.

    Article  PubMed  Google Scholar 

  46. Lajeunie E, Ma HW, Bonaventure J, Munnich A, Le Merrer M, Renier D. FGFR2 mutations in Pfeiffer syndrome. Nat Genet. 1995;9:108.

    Article  CAS  PubMed  Google Scholar 

  47. Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucl Acids Res. 2009;37(9):e67.

    Google Scholar 

  48. Brunak S, Engelbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol. 1991;220(1):49–65.

    Article  CAS  PubMed  Google Scholar 

  49. Cohen MM. Birth prevalence study of the Apert syndrome. Am J Med Genet. 1992;42:655–9.

    Article  PubMed  Google Scholar 

  50. Tolarova MM, Harris JA, Ordway DE, Vargervik K. Birth prevalence, mutation rate, sex ratio, parents’ age, and ethnicity in Apert syndrome. Am J Med Genet. 1997;72(4):394–8.

    Article  CAS  PubMed  Google Scholar 

  51. Moloney DM, Slaney SR, Oldridge M, Wall SA, Sahlin P, Stenman G, Wilkie AOM. Exclusive paternal origin of new mutations in Apert syndrome. Nat Genet. 1996;13(1):48–53.

    Google Scholar 

  52. Wilkie AOM, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David DJ, Pulleyn LJ, Rutland P, Malcolm S, Winter RM, Reardon W. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9(2):165–72.

    Google Scholar 

  53. Rohatgi M. Cloverleaf skull — a severe form of Crouzon’s syndrome: a new concept in aetiology. Acta Neurochir. 1991;108(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  54. Murdoch-Kinch CA, Bixler D, Ward RE. Cephalometric analysis of families with dominantly inherited Crouzon syndrome: an aid to diagnosis in family studies. Am J Med Genet. 1998;77(5):405–11.

    Article  CAS  PubMed  Google Scholar 

  55. Cohen MM, Kreiborg S. Birth prevalence studies of the Crouzon syndrome: comparison of direct and indirect methods. Clin Genet. 1992;41(1):12–5.

    Article  PubMed  Google Scholar 

  56. Arnaud-López L, Fragoso R, Mantilla-Capacho J, Barros-Núñez P. Crouzon with acanthosis nigricans. Further delineation of the syndrome. Clin Genet. 2007;72(5):405–10.

    Article  PubMed  Google Scholar 

  57. Escobar LF, Hiett AK, Marnocha A. Significant phenotypic variability of Muenke syndrome in identical twins. Am J Med Genet A. 2009;149A(6):1273–6.

    Article  PubMed  Google Scholar 

  58. Bellus GA, Gaudenz K, Zackai EH, Clarke LA, Szabo J, Francomano CA, Muenke M. Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes. Nat Genet. 1996;14(2):174–6.

    Google Scholar 

  59. Muenke M, Wilkie AOM. Craniosynostosis syndromes. In: Scriver C, Beaudet A, Sly W, et al., editors. The metabolic and molecular basis of inherited disease. New York, NY: McGraw-Hill; 2001.

    Google Scholar 

  60. Graham JM, Braddock SR, Mortier GR, Lachman R, Van Dop C, Jabs EW. Syndrome of coronal craniosynostosis with brachydactyly and carpal/tarsal coalition due to Pro250Arg mutation in FGFR3 gene. Am J Med Genet. 1998;77(4):322–9.

    Article  PubMed  Google Scholar 

  61. Lowry RB, Wang Jabs E, Graham GE, Gerritsen J, Fleming J. Syndrome of coronal craniosynostosis, Klippel-Feil anomaly, and sprengel shoulder with and without Pro250Arg mutation in the FGFR3 gene. Am J Med Genet. 2001;104(2):112–9.

    Article  CAS  PubMed  Google Scholar 

  62. Slavotinek A, Crawford H, Golabi M, Tao C, Perry H, Oberoi S, Vargervik K, Friez M. Novel FGFR2 deletion in a patient with Beare–Stevenson-like syndrome. Am J Med Genet A. 2009;149A(8):1814–7.

    Google Scholar 

  63. Cross HE, Opitz JM. Craniosynostosis in the Amish. J Pediatr. 1969;75:1037–44.

    Article  Google Scholar 

  64. Jackson CE, Weiss L, Reynolds WA, Forman TF, Peterson JA. Craniosynostosis, midfacial hypoplasia and foot abnormalities: an autosomal dominant phenotype in a large Amish kindred. J Pediatr. 1976;88(6):963–8.

    Article  CAS  PubMed  Google Scholar 

  65. Jabs EW, Li X, Scott AF, Meyers G, Chen W, Eccles M, Mao J, Charnas LR, Jackson CE, Jaye M. Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet. 1994;8:275–9.

    Google Scholar 

  66. Heike C, Seto M, Hing A, Palidin A, Hu FZ, Preston RA, Ehrlich GD, Cunningham M. Century of Jackson-Weiss syndrome: further definition of clinical and radiographic findings in “lost” descendants of the original kindred*. Am J Med Genet. 2001;100(4):315–24.

    Google Scholar 

  67. Cohen MM. Jackson-Weiss syndrome. Am J Med Genet. 2001;100(4):325–9.

    Article  PubMed  Google Scholar 

  68. Meyers GA, Day D, Goldberg R, Daentl DL, Przylepa KA, Abrams LJ, Graham JM, Feingold M, Moeschler JB, Rawnsley E, Scott AF, Jabs EW. FGFR2 exon IIIa and IIIc mutations in Crouzon, Jackson-Weiss, and Pfeiffer syndromes: evidence for missense changes, insertions, and a deletion due to alternative RNA splicing. Am J Hum Genet. 1996;58(3):491–8.

    Google Scholar 

  69. Roscioli T, Flanagan S, Kumar P, Masel J, Gattas M, Hyland VJ, Glass IA. Clinical findings in a patient with FGFR1 P252R mutation and comparison with the literature. Am J Med Genet. 2000;93(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  70. Antley R, Bixler D. Trapezoidocephaly, midfacial hypoplasia and cartilage abnormalities with multiple synostoses and skeletal fractures. Birth Defects Orig Artic Ser. 1975;11(2):397–401.

    CAS  PubMed  Google Scholar 

  71. McGlaughlin KL, Witherow H, Dunaway DJ, David DJ, Anderson PJ. Spectrum of Antley-Bixler syndrome. J Craniofac Surg. 2010;21(5):1560–4.

    Article  PubMed  Google Scholar 

  72. Chun K, Siegel-Bartelt J, Chitayat D, Phillips J, Ray PN. FGFR2 mutation associated with clinical manifestations consistent with Antley-Bixler syndrome. Am J Med Genet. 1998;77(3):219–24.

    Article  CAS  PubMed  Google Scholar 

  73. Schaefer F, Anderson C, Can B, Say B. Novel mutation in the FGFR2 gene at the same codon as the Crouzon syndrome mutations in a severe Pfeiffer syndrome type 2 case. Am J Med Genet. 1998;75(3):252–5.

    Article  CAS  PubMed  Google Scholar 

  74. White KE, Cabral JM, Davis SI, Fishburn T, Evans WE, Ichikawa S, Fields J, Yu X, Shaw NJ, McLellan NJ, McKeown C, FitzPatrick D, Yu K, Ornitz DM, Econs MJ. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet. 2005;76(2):361–7.

    Google Scholar 

  75. Shiang R, Thompson LM, Zhu Y-Z, Church DM, Fielder TJ, Bocian M, Winokur ST, Wasmuth JJ. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78(2):335–42.

    Google Scholar 

  76. Vajo Z, Francomano CA, Wilkin DJ. The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev. 2000;21(1):23–39.

    CAS  PubMed  Google Scholar 

  77. Bellus GA, McIntosh I, Smith EA, Aylsworth AS, Kaitila I, Horton WA, Greenhaw GA, Hecht JT, Francomano CA. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet. 1995;10(3):357–9.

    Google Scholar 

  78. Nishimura G, Fukushima Y, Ohashi H, Ikegawa S. Atypical radiological findings in achondroplasia with uncommon mutation of the fibroblast growth factor receptor-3 (fgfr-3) gene (gly to cys transition at codon 375). Am J Med Genet. 1995;59(3):393–5.

    Article  CAS  PubMed  Google Scholar 

  79. Superti-Furga A, Unger S. Nosology and classification of genetic skeletal disorders: 2006 revision. Am J Med Genet A. 2007;143A(1):1–18.

    Article  PubMed  Google Scholar 

  80. Foldynova-Trantirkova S, Wilcox WR, Krejci P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat. 2012;33(1):29–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Lanning RW, Brown CA. An improved methodology for the detection of the common mutation in the FGFR3 gene responsible for achondroplasia. Hum Mutat. 1997;10(6):496–9.

    Article  CAS  PubMed  Google Scholar 

  82. Etlik O, Koksal V, Tugba Arican-Baris S, Baris I. An improved tetra-primer PCR approach for the detection of the FGFR3 G380R mutation responsible for achondroplasia. Mol Cell Probes. 2008;22(2):71–5.

    Article  CAS  PubMed  Google Scholar 

  83. He X, Xie F, Ren Z-R (2012) Rapid detection of G1138A and G1138C mutations of FGFR3 gene in patients with achondroplasia using high-resolution melting analysis. Genet Test Mol Biomarkers (in press).

    Google Scholar 

  84. Tavormina PL, Bellus GA, Webster MK, Bamshad MJ, Fraley AE, McIntosh I, Szabo J, Jiang W, Jabs EW, Wilcox WR, Wasmuth JJ, Donoghue DJ, Thompson LM, Francomano CA. A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a Lys650Met mutation in the fibroblast growth factor receptor 3 gene. Am J Hum Genet. 1999;64(3):722–31.

    Google Scholar 

  85. Prinster C, Carrera P, Maschio MD, Weber G, Maghnie M, Vigone MC, Mora S, Tonini G, Rigon F, Beluffi G, Severi F, Chiumello G, Ferrari M. Comparison of clinical-radiological and molecular findings in hypochondroplasia. Am J Med Genet. 1998;75(1):109–12.

    Google Scholar 

  86. Langer LO, Yang SS, Hall JG, Sommer A, Kottamasu SR, Golabi M, Krassikoff N, Opitz JM, Bernstein J. Thanatophoric dysplasia and cloverleaf skull. Am J Med Genet. 1987;28(S3):167–79.

    Google Scholar 

  87. Chen C-P, Chern S-R, Shih J-C, Wang W, Yeh L-F, Chang T-Y, Tzen C-Y. Prenatal diagnosis and genetic analysis of type I and type II thanatophoric dysplasia. Prenat Diag. 2001;21(2):89–95.

    Google Scholar 

  88. Tonni G, Azzoni D, Ventura A, Ferrari B, Felice CD, Baldi M. Thanatophoric dysplasia type I associated with increased nuchal translucency in the first trimester: early prenatal diagnosis using combined ultrasonography and molecular biology. Fetal Pediatr Pathol. 2010;29(5):314–22.

    Article  CAS  PubMed  Google Scholar 

  89. Naveen NS, Murlimanju BV, Kumar V, Pulakunta T, Jeeyar H. Thanatophoric dysplasia: a rare entity. Oman Med J. 2011;26(3):196–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Rousseau F, Saugier P, Merrer ML, Munnich A, Delezoide A-L, Maroteaux P, Bonaventure J, Narcy F, Sanak M. Stop codon FGFR3 mutations in thanatophoric dwarfism type 1. Nat Genet. 1995;10(1):11–2.

    Google Scholar 

  91. Rousseau F, El Ghouzzi V, Delezoide AL, Legeai-Mallet L, Le Merrer M, Munnich A, Bonaventure J. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Hum Mol Genet. 1996;5(4):509–12.

    Google Scholar 

  92. Tavormina PL, Shiang R, Thompson LM, Zhu Y-Z, Wilkin DJ, Lachman RS, Wilcox WR, Rimoin DL, Cohn DH, Wasmuth JJ. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet. 1995;9(3):321–8.

    Google Scholar 

  93. Martínez-Frías ML, Egüés X, Puras A, Hualde J, de Frutos CA, Bermejo E, Nieto MA, Martínez S. Thanatophoric dysplasia type II with encephalocele and semilobar holoprosencephaly: insights into its pathogenesis. Am J Med Genet A. 2011;155(1):197–202.

    Google Scholar 

  94. Bellus GA, Spector EB, Speiser PW, Weaver CA, Garber AT, Bryke CR, Israel J, Rosengren SS, Webster MK, Donoghue DJ, Francomano CA. Distinct missense mutations of the FGFR3 Lys650 codon modulate receptor kinase activation and the severity of the skeletal dysplasia phenotype. Am J Hum Genet. 2000;67(6):1411–21.

    Google Scholar 

  95. Merrill AE, Sarukhanov A, Krejci P, Idoni B, Camacho N, Estrada KD, Lyons KM, Deixler H, Robinson H, Chitayat D, Curry CJ, Lachman RS, Wilcox WR, Krakow D. Bent bone dysplaisa-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Am J Hum Genet. 2012;90:550–7.

    Google Scholar 

  96. Collet C, Alessandri JL, Arnaud E, Balu M, Daire V, Di Rocco F. Crouzon syndrome and bent bone dysplasia associated with mutatins at the same Tyr-381 residue in FGFR2 gene. Clin Genet. 2013. doi:10.1111/cge.12213. Epub ahead of print.

    PubMed  Google Scholar 

  97. Toydemir RM, Brassington AE, Bayrak-Toydemir P, Krakowiak PA, Jorde LB, Whitby FG, Longo N, Viskochil DH, Carey JC, Bamshad MJ. A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am J Hum Genet. 2006;79(5):935–41.

    Google Scholar 

  98. Makrythanasis P, Temtamy S, Aglan MS, Otaify GA, Hamamy H, Antonarakis SE. A Novel Homozygous Mutation in FGFR3 Causes Tall Stature, Severe Lateral Tibial Deviation, Scoliosis, Hearing Impairment, Camptodactyly, and Arachnodactyly. Hum Mutat. 2014;35(8):959–63.

    Google Scholar 

  99. Kaplan JD, Bernstein JA, Kwan A, Hudgins L. Clues to an early diagnosis of Kallmann syndrome. Am J Med Genet A. 2010;152A(11):2796–801.

    Article  PubMed  Google Scholar 

  100. Cadman SM, Kim SH, Hu Y, González-Martínez D, Bouloux PM. Molecular pathogenesis of Kallmann’s syndrome. Horm Res. 2007;67(5):231–42.

    Article  CAS  PubMed  Google Scholar 

  101. Kulkarni M, Balaji M, Kulkarni A, Sushanth S, Kulkarni B. Kallmann’s syndrome. Indian J Pediatr. 2007;74(12):1113–5.

    Article  CAS  PubMed  Google Scholar 

  102. Dode C, Levilliers J, Dupont J-M, De Paepe A, Le Du N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F, Pecheux C, Le Tessier D, Cruaud C, Delpech M, Speleman F, Vermeulen S, Amalfitano A, Bachelot Y, Bouchard P, Cabrol S, Carel J-C, Delemarre-van de Waal H, Goulet-Salmon B, Kottler M-L, Richard O, Sanchez- Franco F, Saura R, Young J, Petit C, Hardelin J-P. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003;33(4):463–5.

    Google Scholar 

  103. Milunsky JM, Zhao G, Maher TA, Colby R, Everman DB. LADD syndrome is caused by FGF10 mutations. Clin Genet. 2006;69(4):349–54.

    Article  CAS  PubMed  Google Scholar 

  104. Rohmann E, Brunner HG, Kayserili H, Uyguner O, Nurnberg G, Lew ED, Dobbie A, Eswarakumar VP, Uzumcu A, Ulubil-Emeroglu M, Leroy JG, Li Y, Becker C, Lehnerdt K, Cremers CWRJ, Yuksel-Apak M, Nurnberg P, Kubisch C, Schlessinger J, van Bokhoven H, Wollnik B. Mutations in different components of FGF signaling in LADD syndrome. Nat Genet. 2006;38(4):414–7.

    Google Scholar 

  105. Shams I, Rohmann E, Eswarakumar VP, Lew ED, Yuzawa S, Wollnik B, Schlessinger J, Lax I. Lacrimo-auriculo-dento-digital syndrome is caused by reduced activity of the fibroblast growth factor 10 (FGF10)-FGF receptor 2 signaling pathway. Mol Cell Biol. 2007;27(19):6903–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Lew ED, Bae JH, Rohmann E, Wollnik B, Schlessinger J. Structural basis for reduced FGFR2 activity in LADD syndrome: Implications for FGFR autoinhibition and activation. PNAS. 2007;104(50):19802–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Hollister DW, Klein SH, De Jager HJ, Lachman RS, Rimoin DL. The lacrimo-auriculo-dento-digital syndrome. J Pediatr. 1973;83(3):438–44.

    Article  CAS  PubMed  Google Scholar 

  108. Shiang EL, Holmes LB. The lacrimo-auriculo-dento-digital syndrome. Pediatrics. 1977;59(6):927–30.

    CAS  PubMed  Google Scholar 

  109. Mathrawala N, Hegde R. Lacrimo-auriculo-dento-digital syndrome. J Indian Soc Pedod Prev Dent. 2011;29(2):168–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Sperber M.S., Ph.D., F.A.C.M.G. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sperber, S., Spector, E. (2016). Fibroblast Growth Factor Receptor and Related Skeletal Disorders. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics