Skip to main content

Fluid Resuscitation

  • Chapter
  • 2434 Accesses

Abstract

Intravenous resuscitation fluids are administered to critically ill patients primarily to correct symptomatic hypovolaemia. Crystalloids are pragmatic first-line resuscitation fluids for the majority of patients with little evidence that colloids confer any clinical benefit over crystalloids. Fluids should be selected according to the cause and severity of hypovolaemia that vary over the course of acute illness, to prevent toxicity, specifically physiological or organ dysfunction associated with the type of fluid, particularly semi-synthetic colloids and chloride-rich crystalloids, and to minimise excess cumulative fluid balance that is independently associated with adverse outcomes.

Keywords

  • Fluid resuscitation
  • Colloids
  • Crystalloids
  • Surgical intensive care

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-19668-8_4
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-19668-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2

References

  1. Foex B. How the cholera epidemic of 1831 resulted in a new technique for fluid resuscitation. Emerg Med J. 2003;20:316–8.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  2. MacGillivray N. Dr. Thomas Latta: the father of intravenous infusion therapy. J Infect Prev. 2009;10:S3–6.

    CrossRef  Google Scholar 

  3. Lee J. Sydney Ringer (1834–1910) and Alexis Hartmann (1898–1964). Anaesthesia. 1981;36:1115–21.

    CAS  CrossRef  PubMed  Google Scholar 

  4. American National Red Cross. History of blood transfusion 2014 (cited 2014 4th April). Available from: http://www.redcrossblood.org/learn-about-blood/history-blood-transfusion

  5. Haase N, Perner A. Hydroxyethyl starch for resuscitation. Curr Opin Crit Care. 2013;19:321–5.

    CrossRef  PubMed  Google Scholar 

  6. FDA. [cited 2014 17th April]. Available from: www.fda.gov/downloads/biologicsbloodvaccines/newsevents/workshopsmeetingsconferences/ucm325456.ppt

  7. Westphal M, James M, Kozek-Langenecker S, Stocker R, Guidet B, Van Aken H. Hydroxyethyl starches: different products-different effects. Anesthesiology. 2009;111:187–202.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Edelman I, Leibman J. Anatomy of body water and electrolytes. Am J Med. 1959;27:256–77.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Starling E. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Levick J, Michel C. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87:198–210.

    CAS  CrossRef  PubMed  Google Scholar 

  11. Woodcock TM, Woodcock TE. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369:1243–51.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ. 1998;317:235–40.

    CrossRef  Google Scholar 

  14. SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.

    CrossRef  Google Scholar 

  15. Cooper DJ, Myburgh J, Heritier S, Finfer S, Bellomo R, Billot L, et al. Albumin resuscitation for traumatic brain injury: is intracranial hypertension the cause of increased mortality? J Neurotrauma. 2013;30:512–8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. SAFE Study Investigators. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357:874–84.

    CrossRef  Google Scholar 

  17. The SAFE Study Investigators. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37:86–96.

    CrossRef  Google Scholar 

  18. Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;10:1412–21.

    CrossRef  Google Scholar 

  19. Myburgh J, McIntyre L. New insights into fluid resuscitation. Intensive Care Med. 2013;39:998–1001.

    CAS  CrossRef  PubMed  Google Scholar 

  20. Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364:2483–95.

    CAS  CrossRef  PubMed  Google Scholar 

  21. Maitland K, George EC, Evans JA, Kiguli S, Olupot-Olupot P, Akech SO, et al. Exploring mechanisms of excess mortality with early fluid resuscitation: insights from the FEAST trial. BMC Med. 2013;11:68.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Myburgh J, Finfer S. Causes of death after fluid bolus resuscitation: new insights from FEAST. BMC Med. 2013;11:67.

    PubMed  PubMed Central  Google Scholar 

  23. Finfer S, Liu B, Taylor C, Bellomo R, Billot L, Cook D, et al. Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit Care. 2010;14:R185.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.

    CAS  CrossRef  PubMed  Google Scholar 

  25. Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet. 2001;357:911–6.

    CAS  CrossRef  PubMed  Google Scholar 

  26. Myburgh J, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Åneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.

    CAS  CrossRef  PubMed  Google Scholar 

  28. Haase N, Wetterslev J, Winkel P, Perner A. Bleeding and risk of death with hydroxyethyl starch in severe sepsis: post hoc analyses of a randomized clinical trial. Intensive Care Med. 2013;39:2126–34.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2, CD000567.

    PubMed  Google Scholar 

  30. FDA. Hydroxyethyl starch solutions: FDA safety communication – boxed warning on increased mortality and severe renal injury and risk of bleeding 2013. Available from: http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm358349.htm

  31. MHRA. Press release: MHRA suspends use of hydroxyethyl starch (HES) drips 2013. Available from: http://www.mhra.gov.uk/NewsCentre/Pressreleases/CON287028

  32. TGA. Monitoring communication: hydroxyethyl starch (Voluven and Volulyte) and increased risk of mortality 2013. Available from: http://www.tga.gov.au/safety/ews-medicine-hydroxyethyl-starch-130709.htm

  33. Bellomo R, Bion J, Finfer S, Myburgh J, Perner A, Reinhart K. Open letter to the executive director of the European medicines agency concerning the licensing of hydroxyethyl starch solutions for fluid resuscitation. Br J Anaesth. 2014;112:595–600.

    CAS  CrossRef  PubMed  Google Scholar 

  34. Bayer O, Reinhart K, Sakr Y, Kabisch B, Kohl M, Riedemann NC, et al. Renal effects of synthetic colloids and crystalloids in patients with severe sepsis: a prospective sequential comparison. Crit Care Med. 2011;39:1335–42.

    CAS  CrossRef  PubMed  Google Scholar 

  35. Schabinski F, Oishi J, Tuche F, Luy A, Sakr Y, Bredle D, et al. Effects of a predominantly hydroxyethyl starch (HES)-based and a predominantly non HES-based fluid therapy on renal function in surgical ICU patients. Intensive Care Med. 2009;35:1539–47.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Yunos NM, Kim IB, Bellomo R, Bailey M, Ho L, Story D, et al. The biochemical effects of restricting chloride-rich fluids in intensive care. Crit Care Med. 2011;39:2419–24.

    CAS  CrossRef  PubMed  Google Scholar 

  37. Morgan T, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid–base change during acute normovolaemic haemodilution. Intensive Care Med. 2004;30:1432–7.

    CrossRef  PubMed  Google Scholar 

  38. Handy J, Soni N. Physiological effects of hyperchloraemia and acidosis. Br J Anaesth. 2008;101:141–50.

    CAS  CrossRef  PubMed  Google Scholar 

  39. Kellum J, Song M, Li J. Science review: extracellular acidosis and the immune response: clinical and physiologic implications. Crit Care. 2004;8:331–6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Kellum J, Song M, Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest. 2006;130:962–7.

    CAS  CrossRef  PubMed  Google Scholar 

  41. Reid F, Lobo D, Williams R, Rowlands B, Allison S. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci. 2003;104:17–24.

    CAS  PubMed  Google Scholar 

  42. Wilkes N, Woolf R, Mutch M, Mallett S, Peachey T, Stephens R, et al. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid–base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93:811–6.

    CAS  CrossRef  PubMed  Google Scholar 

  43. Arlati S, Storti E, Pradella V, Bucci L, Vitolo A, Pulici M. Decreased fluid volume to reduce organ damage: a new approach to burn shock resuscitation? A preliminary study. Resuscitation. 2007;72:371–8.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Advanced Trauma Life Support (ATLS) for doctors Chicago. American College of Surgeons Committee on Trauma 2012. Available from: http://www.facs.org/trauma/atls/index.html

  45. Powell-Tuck J, Gosling P, Lobo D, Allison S, Carlson G, Gore M, et al. British consensus guidelines on intravenous fluid therapy for adult surgical patients (GIFTASUP); 2011. Available from: http://www.bapen.org.uk/pdfs/bapen_pubs/giftasup.pdf

  46. Shaw A, Bagshaw S, Goldstein S, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9 % saline compared to Plasma-Lyte. Ann Surg. 2012;255:821–9.

    CrossRef  PubMed  Google Scholar 

  47. Raghunathan K, Shaw A, Nathanson B, Stürmer T, Brookhart A, Stefan M, et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis. Crit Care Med. 2014;42:1585–91.

    CAS  CrossRef  PubMed  Google Scholar 

  48. The National Heart Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trial Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.

    CrossRef  Google Scholar 

  49. Gustafsson U, Scott M, Schwenk W, Demartines N, Roulin D, Francis N, et al. Guidelines for perioperative care in elective colonic surgery: enhanced recovery after surgery (ERAS(®)) Society recommendations. World J Surg. 2013;37:259–84.

    CAS  CrossRef  PubMed  Google Scholar 

  50. Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2 Suppl 1:S1.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi E. Hammond BN, MN (Crit. Care), MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hammond, N.E., Saxena, M.K., Myburgh, J.A. (2016). Fluid Resuscitation. In: O'Donnell, J., Nácul, F. (eds) Surgical Intensive Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-19668-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19668-8_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19667-1

  • Online ISBN: 978-3-319-19668-8

  • eBook Packages: MedicineMedicine (R0)