Image Alignment for Panorama Stitching in Sparsely Structured Environments

  • Giulia Meneghetti
  • Martin Danelljan
  • Michael Felsberg
  • Klas Nordberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9127)

Abstract

Panorama stitching of sparsely structured scenes is an open research problem. In this setting, feature-based image alignment methods often fail due to shortage of distinct image features. Instead, direct image alignment methods, such as those based on phase correlation, can be applied. In this paper we investigate correlation-based image alignment techniques for panorama stitching of sparsely structured scenes. We propose a novel image alignment approach based on discriminative correlation filters (DCF), which has recently been successfully applied to visual tracking. Two versions of the proposed DCF-based approach are evaluated on two real and one synthetic panorama dataset of sparsely structured indoor environments. All three datasets consist of images taken on a tripod rotating 360 degrees around the vertical axis through the optical center. We show that the proposed DCF-based methods outperform phase correlation-based approaches on these datasets.

Keywords

Image alignment Panorama stitching Image registration Phase correlation Discriminative correlation filters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alba, A., Aguilar-Ponce, R.M., Vigueras-Gómez, J.F., Arce-Santana, E.: Phase correlation based image alignment with subpixel accuracy. In: Batyrshin, I., González Mendoza, M. (eds.) MICAI 2012, Part I. LNCS, vol. 7629, pp. 171–182. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Boddeti, V.N., Kanade, T., Kumar, B.V.K.V.: Correlation filters for object alignment. In: CVPR (2013)Google Scholar
  3. 3.
    Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: CVPR (2010)Google Scholar
  4. 4.
    Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24, 325–376 (1992)CrossRefGoogle Scholar
  5. 5.
    Brown, M., Lowe, D.: Recognising panoramas. In: IJCV, Nice, vol. 2, pp. 1218–1225, October 2003Google Scholar
  6. 6.
    Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. IJCV 74(1), 59–73 (2007)CrossRefGoogle Scholar
  7. 7.
    Chen, Q., Defrise, M., Deconinck, F.: Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition. TPAMI 16(12), 1156–1168 (1994)CrossRefGoogle Scholar
  8. 8.
    Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Coloring channel representations for visual tracking. In: SCIA (2015)Google Scholar
  9. 9.
    Danelljan, M., Häger, G., Shahbaz Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: BMVC (2014)Google Scholar
  10. 10.
    Danelljan, M., Shahbaz Khan, F., Felsberg, M., van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: CVPR (2014)Google Scholar
  11. 11.
    De Castro, E., Morandi, C.: Registration of translated and rotated images using finite fourier transforms. TPAMI 9(5), 700–703 (1987)CrossRefGoogle Scholar
  12. 12.
    Eisenbach, J., Mertz, M., Conrad, C., Mester, R.: Reducing camera vibrations and photometric changes in surveillance video. In: AVSS, pp. 69–74, August 2013Google Scholar
  13. 13.
    Foroosh, H., Zerubia, J., Berthod, M.: Extension of phase correlation to subpixel registration. IEEE Transactions on Image Processing 11(3), 188–200 (2002)CrossRefGoogle Scholar
  14. 14.
    Galoogahi, H., Sim, T., Lucey, S.: Multi-channel correlation filters. In: ICCV (2013)Google Scholar
  15. 15.
    Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. CoRR abs/1404.7584 (2014)Google Scholar
  16. 16.
    Horner, J.L., Gianino, P.D.: Phase-only matched filtering. Applied Optics 23(6), 812–816 (1984)CrossRefGoogle Scholar
  17. 17.
    Kristan, M., et al.: The visual object tracking vot2014 challenge results. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014 Workshops. LNCS, vol. 8926, pp. 191–217. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  18. 18.
    Kuglin C.D., Hines, D.C.: The phase correlation image alignment method. In: 1975 International Conference on Cybernetics and Society (1975)Google Scholar
  19. 19.
    MATLAB: Computer Vision Toolbox - version 8.4.0 (R2014b). The MathWorks Inc., Natick, Massachusetts (2015)Google Scholar
  20. 20.
    Szeliski, R.: Image alignment and stitching: A tutorial. Found. Trends. Comput. Graph. Vis. 2(1), 1–104 (2006)CrossRefGoogle Scholar
  21. 21.
    Takita, K.: High-accuracy subpixel image registration based on phase-only correlation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer 86(8), 1925–1934 (2003)Google Scholar
  22. 22.
    van de Weijer, J., Schmid, C., Verbeek, J.J., Larlus, D.: Learning color names for real-world applications. TIP 18(7), 1512–1524 (2009)Google Scholar
  23. 23.
    Wolberg, G., Zokai, S.: Robust image registration using log-polar transform. In: ICIP (2000)Google Scholar
  24. 24.
    Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR (2013)Google Scholar
  25. 25.
    Zitov, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giulia Meneghetti
    • 1
  • Martin Danelljan
    • 1
  • Michael Felsberg
    • 1
  • Klas Nordberg
    • 1
  1. 1.Computer Vision LaboratoryLinköping UniversityLinköpingSweden

Personalised recommendations