Skip to main content

Wireless Autonomous Robot Evacuation from Equilateral Triangles and Squares

  • Conference paper
  • First Online:
Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9143))

Included in the following conference series:

Abstract

Consider an equilateral triangle or square with sides of length \(1\). A number of robots starting at the same location on the perimeter or in the interior of the triangle or square are required to evacuate from an exit which is located at an unknown location on its perimeter. At any time the robots can move at identical speed equal to \(1\), and they can cooperate by communicating with each other wirelessly. Thus, if a robot finds the exit it can broadcast “exit found” to the remaining robots which then move in a straight line segment towards the exit to evacuate. Our task is to design robot trajectories that minimize the evacuation time of the robots, i.e., the time the last robot evacuates from the exit. Designing such optimal algorithms turns out to be a very demanding problem and even the case of equilateral triangles turns out to be challenging.

We design optimal evacuation trajectories (algorithms) for two robots in the case of equilateral triangles for any starting position and for squares for starting positions on the perimeter. It is shown that for an equilateral triangle, three or more robots starting on the perimeter cannot achieve better evacuation time than two robots, while there exist interior starting points from which three robots evacuate faster than two robots. For the square, three or more robots starting at one of the corners cannot achieve better evacuation time than two robots, but there exist points on the perimeter of the square such that three robots starting from such a point evacuate faster than two robots starting from this same point. In addition, in either the equilateral triangle or the square it can be shown that a simple algorithm is asymptotically optimal (in the number \(k\) of robots, as \(k \rightarrow \infty \)), provided that the robots start at the centre of the corresponding domain.

J. Czyzowicz, E. Kranakis, L. Narayanan, and J. Opatrny — Research supported in part by NSERC grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlswede, R., Wegener, I.: Search Problems. Wiley, New York (1987)

    MATH  Google Scholar 

  2. Albers, S., Henzinger, M.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. Algorithmica 32(1), 123–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. International Series in Operations Research and Management Science, Vol. 55. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  5. Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile sensors for barrier coverage of a planar region. Theoret. Comput. Sci. 410(52), 5515–5528 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Providence (2011)

    Book  MATH  Google Scholar 

  7. Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015)

    Google Scholar 

  8. Chung, T., Hollinger, G., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Robots 31(4), 299–316 (2011)

    Article  Google Scholar 

  9. Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014)

    Google Scholar 

  10. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  11. Deng, X., Kameda, T., Papadimitriou, C.: How to learn an unknown environment. In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science (FOCS 1991), pp. 298–303. IEEE (1991)

    Google Scholar 

  12. Fekete, S., Gray, C., Kröller, A.: Evacuation of rectilinear polygons. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 21–30. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Gluss, B.: An alternative solution to the lost at sea problem. Nav. Res. Logistics Q. 8(1), 117–122 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem. SIAM J. Comput. 31(2), 577–600 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kleinberg, J.: On-line search in a simple polygon. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 8–15. Society for Industrial and Applied Mathematics (1994)

    Google Scholar 

  16. Nahin, P.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton (2012)

    Google Scholar 

  17. Stone, L.: Theory of Optimal Search. Academic Press, New York (1975)

    MATH  Google Scholar 

  18. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proceedings of the Second International Conference on Autonomous Agents, pp. 47–53. ACM (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S. (2015). Wireless Autonomous Robot Evacuation from Equilateral Triangles and Squares. In: Papavassiliou, S., Ruehrup, S. (eds) Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2015. Lecture Notes in Computer Science(), vol 9143. Springer, Cham. https://doi.org/10.1007/978-3-319-19662-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19662-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19661-9

  • Online ISBN: 978-3-319-19662-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics