Advertisement

The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation

  • Yusupjan Habibulla
  • Jin-Hua Zhao
  • Hai-Jun ZhouEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9130)

Abstract

A minimum dominating set for a digraph (directed graph) is a smallest set of vertices such that each vertex either belongs to this set or has at least one parent vertex in this set. We solve this hard combinatorial optimization problem approximately by a local algorithm of generalized leaf removal and by a message-passing algorithm of belief propagation. These algorithms can construct near-optimal dominating sets or even exact minimum dominating sets for random digraphs and also for real-world digraph instances. We further develop a core percolation theory and a replica-symmetric spin glass theory for this problem. Our algorithmic and theoretical results may facilitate applications of dominating sets to various network problems involving directed interactions.

Keywords

Directed graph Dominating vertices Graph observation Core percolation Message passing 

Notes

Acknowledgments

This research is partially supported by the National Basic Research Program of China (grant number 2013CB932804) and by the National Natural Science Foundations of China (grant numbers 11121403 and 11225526). HJZ conceived research, JHZ and YH performed research, HJZ and JHZ wrote the paper. Correspondence should be addressed to HJZ (zhouhj@itp.ac.cn) or to JHZ (zhaojh@itp.ac.cn).

References

  1. 1.
    Fu, Y.: Dominating set and converse dominating set of a directed graph. Amer. Math. Monthly 75, 861–863 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)zbMATHGoogle Scholar
  3. 3.
    Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  4. 4.
    Mézard, M., Tarzia, M.: Statistical mechanics of the hitting set problem. Phys. Rev. E 76, 041124 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gutin, G., Jones, M., Yeo, A.: Kernels for below-upper-bound parameterizations of the hitting set and directed dominating set problems. Theor. Comput. Sci. 412, 5744–5751 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Takaguchi, T., Hasegawa, T., Yoshida, Y.: Suppressing epidemics on networks by exploiting observer nodes. Phys. Rev. E 90, 012807 (2014)CrossRefGoogle Scholar
  7. 7.
    Wuchty, S.: Controllability in protein interaction networks. Proc. Natl. Acad. Sci. USA 111, 7156–7160 (2014)CrossRefGoogle Scholar
  8. 8.
    Wang, H., Zheng, H., Browne, F., Wang, C.: Minimum dominating sets in cell cycle specific protein interaction networks. In: Proceedings of International Conference on Bioinformatics and Biomedicine (BIBM 2014), pp. 25–30. IEEE (2014)Google Scholar
  9. 9.
    Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Observability of complex systems. Proc. Natl. Acad. Sci. USA 110, 2460–2465 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Yang, Y., Wang, J., Motter, A.E.: Network observability transitions. Phys. Rev. Lett. 109, 258701 (2012)CrossRefGoogle Scholar
  11. 11.
    Pang, C., Zhang, R., Zhang, Q., Wang, J.: Dominating sets in directed graphs. Infor. Sci. 180, 3647–3652 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Molnár Jr., F., Sreenivasan, S., Szymanski, B.K., Korniss, K.: Minimum dominating sets in scale-free network ensembles. Sci. Rep. 3, 1736 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhao, J.H., Habibulla, Y., Zhou, H.J.: Statistical mechanics of the minimum dominating set problem. J. Stat, Phys. (2015). doi: 10.1007/s10955-015-1220-2
  14. 14.
    Bauer, M., Golinelli, O.: Core percolation in random graphs: a critical phenomena analysis. Eur. Phys. J. B 24, 339–352 (2001)CrossRefGoogle Scholar
  15. 15.
    Liu, Y.Y., Csóka, E., Zhou, H.J., Pósfai, M.: Core percolation on complex networks. Phys. Rev. Lett. 109, 205703 (2012)CrossRefGoogle Scholar
  16. 16.
    Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  17. 17.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM, New York (2010)Google Scholar
  18. 18.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 641–650. ACM, New York (2010)Google Scholar
  19. 19.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Disc. Data 1, 2 (2007)Google Scholar
  20. 20.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 177–187. ACM, New York (2005)Google Scholar
  21. 21.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6, 29–123 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network: properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Comput. 6, 50–57 (2002)Google Scholar
  23. 23.
    Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, New York (2009) zbMATHCrossRefGoogle Scholar
  24. 24.
    Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47, 498–519 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Xiao, J.Q., Zhou, H.J.: Partition function loop series for a general graphical model: free-energy corrections and message-passing equations. J. Phys. A: Math. Theor. 44, 425001 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhou, H.J., Wang, C.: Region graph partition function expansion and approximate free energy landscapes: theory and some numerical results. J. Stat. Phys. 148, 513–547 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Mézard, M., Parisi, G.: The bethe lattice spin glass revisited. Eur. Phys. J. B 20, 217–233 (2001)CrossRefGoogle Scholar
  28. 28.
    Zhao, J.H., Zhou, H.J.: Statistical physics of hard combinatorial optimization: vertex cover problem. Chin. Phys. B 23, 078901 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yusupjan Habibulla
    • 1
  • Jin-Hua Zhao
    • 1
  • Hai-Jun Zhou
    • 1
    Email author
  1. 1.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations