Cloud Robotics in FIWARE: A Proof of Concept

  • F. HerranzEmail author
  • J. Jaime
  • I. González
  • Á. Hernández
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9121)


Novel Cloud infrastructures and their extensive set of resources have potential to help robotics to overcome its limitations. Traditionally, those limitations have been related with the number of sensors that are equipped in the robots and their computational power. The drawbacks of these limitations can be reduced by using the benefits of cloud architectures such as cloud computing, Internet of Things (IoT) sensing and cloud storage. FIWARE is an open platform which integrates cloud capabilities and Generics Enablers (GE) to interact with the cloud. This paper proposes the development of a Robotics GE and it presents the integration of the new GE into the FIWARE architecture. Two are the main goals behind this integration, first to bring all the benefits that FIWARE provides to robotics, and second to facilitate the development of robotics applications to non-expert robotics developers. Finally, a real example of the integration is shown by means of a parking meter application that combines context information, robotics, and cloud computing of vision algorithms.


Robotics FIWARE Cloud 



This work is being partially supported by the EU co-funded IST projects FI-WARE: Future Internet Core Platform (GA 285248) and FI-CORE: Future Internet - Core (GA 632893), as part of the European Commissions Future Internet Public-Private Partnership (FI-PPP) initiative.


  1. 1.
    Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture, applications, and approaches. Wirel. Commun. Mob. Comput. 13(18), 1587–1611 (2013)CrossRefGoogle Scholar
  2. 2.
    Hunziker, D., Gajamohan, M., Waibel, M., D’Andrea, R.: Rapyuta: the roboearth cloud engine. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 438–444. IEEE (2013)Google Scholar
  3. 3.
    Usländer, T., Berre, A.J., Granell, C., Havlik, D., Lorenzo, J., Sabeur, Z., Modafferi, S.: The future internet enablement of the environment information space. In: Hřebíček, J., Schimak, G., Kubásek, M., Rizzoli, A.E. (eds.) ISESS 2013. IFIP AICT, vol. 413, pp. 109–120. Springer, Heidelberg (2013) Google Scholar
  4. 4.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)Google Scholar
  5. 5.
    Ramparany, F., Marquez, F.G., Soriano, J., Elsaleh, T.: Handling smart environment devices, data and services at the semantic level with the FI-WARE core platform. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 14–20. IEEE (2014)Google Scholar
  6. 6.
    Arumugam, R., Enti, V.R., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F.F., Kumar, A.S., Meng, K.D., Kit, G.W.: DAvinCi: a cloud computing framework for service robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3084–3089. IEEE (2010)Google Scholar
  7. 7.
    Sato, M., Kamei, K., Nishio, S., Hagita, N.: The ubiquitous network robot platform: common platform for continuous daily robotic services. In: 2011 IEEE/SICE International Symposium on System Integration (SII), pp. 318–323. IEEE (2011)Google Scholar
  8. 8.
    Crick, C., Jay, G., Osentoski, S., Jenkins, O.C.: ROS and rosbridge: roboticists out of the loop. In: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 493–494. ACM (2012)Google Scholar
  9. 9.
    Bellabas, A., Ramparany, F., Arndt, M.: Fiware infrastructure for smart home applications. In: O’Grady, M.J., Vahdat-Nejad, H., Wolf, K.-H., Dragone, M., Ye, J., Röcker, C., O’Hare, G. (eds.) AmI Workshops 2013. CCIS, vol. 413, pp. 308–312. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Gordillo, A., Gallego, D., Barra, E., Quemada, J.: The city as a learning gamified platform. In: Frontiers in Education Conference, pp. 372–378. IEEE (2013)Google Scholar
  11. 11.
    Bauer, M., Kovacs, E., Schulke, A., Ito, N., Criminisi, C., Goix, L.W., Valla, M.: The context API in the OMA next generation service interface. In: 2010 14th International Conference on Intelligence in Next Generation Networks (ICIN), pp. 1–5. IEEE (2010)Google Scholar
  12. 12.
    Cerami, E.: Web services essentials: distributed applications with XML-RPC, SOAP, UDDI & WSDL. O’Reilly Media, Inc. (2002)Google Scholar
  13. 13.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT press, Cambridge (2005) zbMATHGoogle Scholar
  14. 14.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robotics 23(1), 34–46 (2007)CrossRefGoogle Scholar
  15. 15.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  16. 16.
    Barth, W.: Nagios: System and Network Monitoring. No Starch Press, New York (2008) Google Scholar
  17. 17.
    Lopez Fernandez, L., Paris Diaz, M., Benitez Mejias, R., Lopez, F., Santos, J.: Kurento: a media server technology for convergent www/mobile real-time multimedia communications supporting webrtc. In: 2013 IEEE 14th International Symposium and Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–6. June 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • F. Herranz
    • 1
    Email author
  • J. Jaime
    • 1
  • I. González
    • 1
  • Á. Hernández
    • 1
  1. 1.Ikergune at Etxe-Tar GroupElgoibar, BilbaoSpain

Personalised recommendations