Skip to main content

Abstract

Learning, knowledge, educations are syntax forms that stand for a multifaceted matter, and its assets set the advances on culture, organization, and social matters of any society. However, it is not enough just to instruct, it is necessary to do it with quality, in a holistic way, in order to develop academic and social skills. From this point of view, the weight of the formal, non-formal and informal learning contexts should be underlined, and the use of defective information must be emphasizing. Under this setting the assessment to quality of learning is mandatory, although it is hard to do with traditional methodologies for problem solving. Indeed, in this work we will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate the Quality of Learning and the respective Degree-of-Confidence that one has on such a happening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dias, M.: The Impact of Lisbon’s Strategy on the Patterns of Education and Training in Portugal. Procedia – Social and Behavioral Sciences 116, 1885–1889 (2014)

    Article  Google Scholar 

  2. United Nations Educational, Scientific and Cultural Organization: Making Education a Priority in the Post-2015 Development Agenda. UNESCO Edition (2013)

    Google Scholar 

  3. Fitzgerald, C.J., Laurian, S.: Caring our Way to more Effective Learning. Procedia – Social and Behavioral Sciences 76, 341–345 (2013)

    Article  Google Scholar 

  4. Gordon, R., Preble, B.: Transforming school climate and learning: Beyond bullying and compliance. Corwin Press, Thousand Oaks (2011)

    Google Scholar 

  5. Gloria, R., Tatiana, D., Constantin, R.B., Marinela, R.: The Effectiveness of Non-formal Education in Improving the Effort Capacity in Middle-school Pupils. Procedia – Social and Behavioral Sciences 116, 2722–2726 (2014)

    Article  Google Scholar 

  6. Tudor, S.L.: Formal – Non-formal – Informal in Education. Procedia – Social and Behavioral Sciences 76, 821–826 (2013)

    Article  Google Scholar 

  7. Neves, J.: A logic interpreter to handle time and negation in logic data bases. In: Muller, R.L., Pottmyer, J.J. (eds.) Proceedings of the 1984 Annual Conference of the ACM on the Fifth Generation Challenge, pp. 50–54. ACM, New York (1984)

    Chapter  Google Scholar 

  8. Neves, J., Machado, J., Analide, C., Abelha, A., Brito, L.: The halt condition in genetic programming. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, pp. 160–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Cortez, P., Rocha, M., Neves, J.: Evolving Time Series Forecasting ARMA Models. Journal of Heuristics 10, 415–429 (2004)

    Article  Google Scholar 

  10. Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. In: Gabbay, D., Hogger, C., Robinson, I. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)

    Google Scholar 

  11. Pereira, L.M., Anh, H.T.: Evolution prospection. In: Nakamatsu, K., Phillips-Wren, G., Jain, L.C., Howlett, R.J. (eds.) New Advances in Intelligent Decision Technologies. SCI, vol. 199, pp. 51–63. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Halpern, J.: Reasoning about uncertainty. MIT Press, Massachusetts (2005)

    Google Scholar 

  13. Kovalerchuck, B., Resconi, G.: Agent-based uncertainty logic network. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Barcelona, pp. 596–603 (2010)

    Google Scholar 

  14. Lucas, P.: Quality checking of medical guidelines through logical abduction. In: Coenen, F., Preece, A., Mackintosh, A. (eds.) Proceedings of AI-2003 (Research and Developments in Intelligent Systems XX), pp. 309–321. Springer, London (2003)

    Google Scholar 

  15. Machado, J., Abelha, A., Novais, P., Neves, J., Neves, J.: Quality of Service in healthcare units. Int. J. Comput. Aided Eng. Technol. 2, 436–449 (2010)

    Article  Google Scholar 

  16. Cardoso, L., Marins, F., Magalhães, R., Marins, N., Oliveira, T., Vicente, H., Abelha, A., Machado, J., Neves, J.: Abstract Computation in Schizophrenia Detection through Artificial Neural Network based Systems. The Scientific World Journal 2015, Article ID 467178, 1–10 (2015)

    Google Scholar 

  17. Vicente, H., Dias, S., Fernandes, A., Abelha, A., Machado, J., Neves, J.: Prediction of the Quality of Public Water Supply using Artificial Neural Networks. Journal of Water Supply: Research and Technology – AQUA 61, 446–459 (2012)

    Article  Google Scholar 

  18. Salvador, C., Martins, M.R., Vicente, H., Neves, J., Arteiro, J.M., Caldeira, A.T.: Modelling Molecular and Inorganic Data of Amanita ponderosa Mushrooms using Artificial Neural Networks. Agroforestry Systems 87, 295–302 (2013)

    Article  Google Scholar 

  19. Carneiro, D., Novais, P., Andrade, F., Zeleznikow, J., Neves, J.: Using Case-Based Reasoning and Principled Negotiation to provide decision support for dispute resolution. Knowledge and Information Systems 36, 789–826 (2013)

    Article  Google Scholar 

  20. Mendes, R., Kennedy, J., Neves, J.: The Fully Informed Particle Swarm: Simpler, Maybe Better. IEEE Transactions on Evolutionary Computation 8, 204–210 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Neves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Neves, J., Figueiredo, M., Vicente, L., Gomes, G., Macedo, J., Vicente, H. (2015). Quality of Learning under an All-Inclusive Approach. In: Mascio, T., Gennari, R., Vittorini, P., De la Prieta, F. (eds) Methodologies and Intelligent Systems for Technology Enhanced Learning. Advances in Intelligent Systems and Computing, vol 374. Springer, Cham. https://doi.org/10.1007/978-3-319-19632-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19632-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19631-2

  • Online ISBN: 978-3-319-19632-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics