Skip to main content

Quantification of Noble Metals in Biological and Environmental Samples

  • Chapter
Handbook of Trace Analysis

Abstract

Noble metals consist of six elements from the eighth group of the periodic table: ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt) (also known as platinum group metals [PGMs]), and gold (Au). Attractive physical and chemical properties of the metals, such as exceptional stability, hardness, malleability, electrical resistance, inertness to chemical attacks, and excellent catalytic activity, have resulted in their wide application, for example, as catalysts in various chemical processes; in autocatalysts (catalytic converters for vehicles); in electrical, electronic, and glass industries; in jewelry and investment [1]. PGMs are extensively used as the components of automobile catalysts (50.4 % of all uses in 2012 [2]). Confirmed release of ultratraces of these metals during vehicle operation as a result of thermal and mechanical abrasion of the catalysts is their source in the environment [2–10]. Medical application of some noble metal compounds is the second (after autocatalysts) anthropogenic source of these metals in the environment [11–13]. Since 1978 (date of the introduction of cisplatin, cis-diamminedichloroplatinum(II), to chemotherapy as an effective anticancer agent), numerous different complexes of platinum and other noble metal compounds have been extensively examined for anticancer activity [14–26]. Some of the second-generation compounds of Pt (carboplatin and oxaliplatin) have received worldwide approval for routine medical treatment, and some (lobaplatin, nedaplatin, and heptaplatin) are locally approved (in China, Japan, and South Korea, respectively). Cisplatin is still a leading drug, being used in 50–70 % of all anticancer chemotherapeutic treatments [17, 19]. There are numerous other metal compounds currently under clinical trial, and some Ru-based complexes seem promising because of improved antitumor activity and fewer side effects compared with cisplatin [15–18, 21–23, 25, 26].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Platinum 2013 Interim Review, Johnson Matthey PLC, England

    Google Scholar 

  2. Sobrova, P., Zehnalek, J., Vojtech, A., Beklova, M., Kizek, R.: The effects on soil/water/plant/animal systems by platinum group elements. Cent. Eur. J. Chem. 10, 1369–1382 (2012)

    CAS  Google Scholar 

  3. Rosner, G., König, H.P., Coenen-Stass, D., WHO: Platinum. Environmental Health Criteria Series, No. 125. International Programme on Chemical Safety. WHO, Geneva (1991)

    Google Scholar 

  4. Zereini, F., Alt, F. (eds.): Anthropogenic platinum-group element emissions. Their impact on men and environment. Springer, Berlin (2000)

    Google Scholar 

  5. Melber, Ch., Keller, D., Mangelsdorf, I., WHO: Palladium. Environmental Health Criteria Series, No. 226. International Program on Chemical Safety. WHO, Geneva (2002)

    Google Scholar 

  6. Ravindra, K., Bencs, L., Van Grieken, R.: Platinum group elements in the environment and their health risk. Sci. Total Environ. 318, 1–43 (2004)

    CAS  Google Scholar 

  7. Zereini, F., Alt, F. (eds.): Palladium emissions in the environment. Analytical methods, environmental assessment and health effects. Springer, Berlin (2006)

    Google Scholar 

  8. Dubiella-Jackowska, A., Kudlak, B., Polkowska, Z., Namieśnik, J.: Environmental fate of traffic-derived platinum group metals. Crit. Rev. Anal. Chem. 39, 251–271 (2009)

    CAS  Google Scholar 

  9. Cooper, J., Beecham, J.: A study of platinum group metals in three-way autocatalysts. Platin. Met. Rev. 57, 281–288 (2013)

    Google Scholar 

  10. Reith, F., Campbell, S.G., Ball, A.S., Pring, A., Southam, G.: Platinum in earth surface environments. Earth Sci. Rev. 131, 1–21 (2014)

    CAS  Google Scholar 

  11. Kümmerer, K., Helmers, E., Hubner, P., Mascart, G., Milandri, M., Reinthaler, F., Zwakenberg, M.: European hospitals as a source for platinum in the environment in comparison with other sources. Sci. Total Environ. 225, 155–165 (1999)

    Google Scholar 

  12. Lenz, K., Hann, S., Koellensperger, G., Stefanka, Z., Stingeder, G., Weissenbacher, N., Mahnik, S.N., Fuerhacker, M.: Presence of cancerostatic platinum compounds in hospital wastewater and possible elimination by adsorption to activated sludge. Sci. Total Environ. 345, 141–152 (2005)

    CAS  Google Scholar 

  13. Goulle, J.P., Saussereau, E., Mahieu, L., Cellier, D., Spiroux, J., Guerbet, M.: Importance of anthropogenic metals in hospital and urban wastewater: its significance for the environment. Bull. Environ. Contamin. Toxicol. 89, 1220–1224 (2012)

    CAS  Google Scholar 

  14. Keppler, B.K. (ed.): Metal complexes in cancer chemotherapy. VCH, Weinheim (1993)

    Google Scholar 

  15. Allesio, E., Mestroni, G., Bergamo, A., Sava, G.: Ruthenium antimetastatic agents. Curr. Top. Med. Chem. 4, 1525–1535 (2004)

    Google Scholar 

  16. Ang, W.H., Dyson, P.J.: Classical and non-classical ruthenium based anticancer drugs: towards targeted chemotherapy. Eur. J. Inorg. Chem. 4003–4018 (2006)

    Google Scholar 

  17. Dyson, P.J., Sava G.: Metal-based antitumor drugs in the post genomic era. Dalton Trans. 1929–1933 (2006)

    Google Scholar 

  18. Kostova, I.: Ruthenium complexes as anticancer agents. Curr. Med. Chem. 13, 1085–1107 (2006)

    CAS  Google Scholar 

  19. Lippert, B. (ed.): Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  20. Galanski, M.: Special Issue: Anticancer platinum complexes. State of the art and future prospects. Anti-Cancer Agents Med. Chem. 7, 1–138 (2007)

    CAS  Google Scholar 

  21. Jakupec, M.A., Galanski, M., Arion, V.B., Hartinger, Ch.G., Keppler, B.K.: Antitumour metal compounds: more than theme and variations. Dalton Trans. 183–194 (2008)

    Google Scholar 

  22. Levina, A., Mitra, A., Lay, P.A.: Recent developments in ruthenium anticancer drugs. Metallomics 1, 458–470 (2009)

    CAS  Google Scholar 

  23. van Rijt, S.H., Sadler, P.J.: Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov. Today 14, 1089–1097 (2009)

    Google Scholar 

  24. Wheate, N.J., Walker, S., Craig, G.E., Oun, R.: The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39, 8113–8127 (2010)

    CAS  Google Scholar 

  25. Bergamo, A., Gaiddon, C., Schellens, J.H.M., Beijnen, J.H., Sava, G.: Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J. Inorg. Biochem. 106, 90–99 (2012)

    CAS  Google Scholar 

  26. Muhammad, N., Guo, Z.: Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol. 19, 144–153 (2014)

    CAS  Google Scholar 

  27. Parrot, J.L., Hébert, R., Saindelle, A., Ruff, F.: Platinum and platinosis. Allergy and histamine release due to some platinum salts. Arch. Environ. Health 19, 685–691 (1969)

    CAS  Google Scholar 

  28. Schmid, M., Zimmerman, S., Krug, H.F., Sures, B.: Influence of platinum, palladium and rhodium as compared with cadmium, nickel and chromium on cell viability and oxidative stress in human bronchial epithelial cells. Environ. Int. 33, 385–390 (2007)

    CAS  Google Scholar 

  29. Merget, R., Rosner, G.: Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters. Sci. Total Environ. 270, 165–173 (2001)

    CAS  Google Scholar 

  30. Ek, K.H., Morrison, G.M., Rauch, S.: Environmental routes for platinum group elements to biological materials – a review. Sci. Total Environ. 334–335, 21–38 (2004)

    Google Scholar 

  31. Gagnon, Z.E., Newkirk, C.E., Hicks, S.: Impact of platinum group metals on the environment: a toxicological, genotoxic and analytical chemistry study. J. Environ. Sci. Health 41, 397–414 (2006)

    CAS  Google Scholar 

  32. Wiseman, C.L., Zereini, F.: Airborne particulate matter, platinum group elements and human health: a review of recent evidence. Sci. Total Environ. 407, 2493–2500 (2009)

    CAS  Google Scholar 

  33. Balcerzak, M.: Sample digestion methods for the determination of traces of precious metals by spectrometric techniques. Anal. Sci. 18, 737–750 (2002)

    CAS  Google Scholar 

  34. Prasada, R.T., Daniel, S.: Preconcentration of trace and ultratrace amounts of platinum and palladium from real samples. Rev. Anal. Chem. 22, 167–189 (2003)

    Google Scholar 

  35. Godlewska-Żyłkiewicz, B.: Preconcentration and separation procedures for the spectrochemical determination of platinum and palladium. Microchim. Acta 147, 189–210 (2004)

    Google Scholar 

  36. Mokhodoeva, O.B., Myasoedova, G.V., Kubrakova, I.V.: Sorption preconcentration in combined methods for the determination of noble metals. J. Anal. Chem. 62, 607–622 (2007)

    CAS  Google Scholar 

  37. Resano, M., García-Ruiz, E., Belarra, M.A., Vanhaecke, F., McIntosh, K.S.: Solid sampling in the determination of precious metals at ultratrace levels. Trends Anal. Chem. 26, 385–395 (2007)

    CAS  Google Scholar 

  38. Lim, M.D., Dickherber, A., Compton, C.C.: Before you analyze a human specimen think quality, variability, and bias. Anal. Chem. 83, 8–13 (2011)

    CAS  Google Scholar 

  39. Barefoot, R.R.: Speciation of platinum compounds: a review of recent applications in studies of platinum anticancer drugs. J. Chromatogr. B 751, 205–211 (2001)

    CAS  Google Scholar 

  40. Küng, A., Pieper, T., Wissiack, R., Rosenberg, B., Keppler, B.K.: Hydrolysis of the tumor-inhibiting ruthenium(III) complexes HIm trans-[RuCl4(im)2] and HInd trans-[RuCl4(ind)2] investigated by means of HPCE and HPLC-MS. J. Biol. Inorg. Chem. 6, 292–299 (2001)

    Google Scholar 

  41. Barefoot, R.R., Van Loon, J.C.: Determination of platinum and gold in anticancer and antiarthritic drugs and metabolites. Anal. Chim. Acta 334, 5–14 (1996)

    CAS  Google Scholar 

  42. Yang, Z., Hou, X.D., Jones, B.T.: Determination of platinum in clinical samples. Appl. Spectrosc. Rev. 37, 57–88 (2002)

    CAS  Google Scholar 

  43. Kinoshita, M., Yoshimura, N., Ogata, H., Tsujino, D., Takahashi, T., Takahashi, S., Wada, Y., Someya, K., Ohno, T., Masuharra, K., Tanaka, Y.: High-performance liquid-chromatographic analysis of unchanged cis-diamminedichloroplatinum (cisplatin) in plasma and urine with post-column derivatization. J. Chromatogr. B 529, 462–467 (1990)

    CAS  Google Scholar 

  44. Van Warmerdam, L.J.C., van Tellingen, O., Maes, R.A.A., Beijnen, J.H.: Validated method for the determination of carboplatin in biological fluids by Zeeman AAS. Fresenius J. Anal. Chem. 351, 777–781 (1995)

    Google Scholar 

  45. Koellensperger, G., Hann, S.: Ultra-fast HPLC-ICP-MS analysis of oxaliplatin in patient urine. Anal. Bioanal. Chem. 397, 401–406 (2010)

    CAS  Google Scholar 

  46. Begerow, J., Turfeld, M., Dunemann, L.: Determination of physiological palladium, platinum, iridium and gold levels in human blood using double focusing magnetic sector field inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 12, 1095–1098 (1997)

    CAS  Google Scholar 

  47. Begerow, J., Turfeld, M., Dunemann, L.: Determination of physiological palladium and platinum levels in urine using double focusing magnetic sector field ICP-MS. Fresenius J. Anal. Chem. 359, 427–429 (1997)

    CAS  Google Scholar 

  48. Gómez, M.B., Gómez, M.M., Palacios, M.A.: Control of interferences in the determination of platinum, palladium and rhodium in airborne particulate matter by inductively coupled plasma mass spectrometry. Anal. Chim. Acta 404, 285–294 (2000)

    Google Scholar 

  49. Zischka, M., Schramel, P., Muntau, H., Rehnert, A., Gomez, G.M., Stojanik, B., Wannemaker, G., Dams, R., Quevauviller, P., Maier, E.A.: A new certified reference material for the quality control of palladium, platinum and rhodium in road dust, BCR-723. Trends Anal. Chem. 21, 851–868 (2002)

    CAS  Google Scholar 

  50. Gómez, M.B., Gómez, M.M., Palacios, M.A.: ICP-MS determination of platinum, palladium and rhodium in airborne and road dust after tellurium coprecipitation. J. Anal. At. Spectrom. 18, 80–83 (2003)

    Google Scholar 

  51. Kanitsar, K., Köllensperger, G., Hann, S., Limbeck, A., Puxbaum, H., Stingeder, G.: Determination of Pt, Pd and Rh by inductively plasma sector field mass spectrometry (ICP-SFMS) in size-classified urban aerosol samples. J. Anal. At. Spectrom. 18, 239–246 (2003)

    CAS  Google Scholar 

  52. Müller, M., Heumann, K.G.: Isotope dilution inductively coupled plasma quadrupole mass spectrometry in connection with a chromatographic separation for ultra-trace determinations of platinum group elements (Pt, Pd, Ru, Ir) in environmental samples. Fresenius J. Anal. Chem. 368, 109–115 (2000)

    Google Scholar 

  53. Fragnière, C., Haldimann, M., Eastgate, A., Krähenbühl, U.: A direct ultratrace determination of platinum in environmental, food and biological samples by ICP-SFMS using a desolvation system. J. Anal. At. Spectrom. 20, 626–630 (2005)

    Google Scholar 

  54. Mukai, H., Ambe, Y., Morita, M.: Flow injection inductively coupled plasma mass spectrometry for the determination of platinum in airborne particulate matter. J. Anal. At. Spectrom. 5, 75–80 (1990)

    CAS  Google Scholar 

  55. Niemelä, M., Kola, H., Perämäki, P., Piispanen, J., Poikolainen, J.: Comparison of microwave-assisted digestion methods and selection of internal standards for the determination of Rh, Pd and Pt in dust samples by ICP-MS. Microchim. Acta 150, 211–217 (2005)

    Google Scholar 

  56. Heinrich, E., Schmidt, G., Kratz, K.L.: Determination of platinum-group elements (PGE) from catalytic convertors in soil by means of docimasy and INAA. Fresenius J. Anal. Chem. 354, 883–885 (1996)

    CAS  Google Scholar 

  57. Farago, M.E., Kavanagh, P., Blanks, R., Kelly, J., Kazantzis, G., Thornton, I., Simpson, P.R., Cook, J.M., Delves, H.T., Hall, G.E.M.: Platinum concentrations in urban road dust and soil, and in blood and urine in the United Kingdom. Analyst 123, 451–454 (1998)

    CAS  Google Scholar 

  58. Schäfer, S., Eckhardt, J.D., Berner, Z.A., Stüben, D.: Time-dependent increase of traffic-emitted platinum-group elements (PGE) in different environmental compartments. Environ. Sci. Technol. 33, 3166–3170 (1999)

    Google Scholar 

  59. Hutchinson, E.J., Farago, M.E., Simpson, P.R.: Changes in platinum concentrations in soils and dusts from UK cities. In: Zereini, F., Alt, F. (eds.) Anthropogenic platinum-group element emissions. Their impact on men and environment, pp. 57–64. Springer, Berlin (2000)

    Google Scholar 

  60. Zereini, F., Skerstupp, B., Rankenburg, K., Dirksen, F., Beyer, J.M., Claus, T., Urban, H.: Anthropogenic emission of platinum-group elements (Pt, Pd and Rh) into the environment: concentration, distribution and geochemical behaviour in soils. In: Zereini, F., Alt, F. (eds.) Anthropogenic platinum-group element emissions. Their impact on men and environment, pp. 73–84. Springer, Berlin (2000)

    Google Scholar 

  61. de Vos, E., Edwards, S.J., MsDonald, I., Wray, D.S., Carey, P.J.: A baseline survey of the distribution and origin of platinum group elements in contemporary fluvial sediments of the Kentish Stour, England. Appl. Geochem. 17, 1115–1121 (2002)

    Google Scholar 

  62. Rauch, S., Hemond, H.F., Peucker-Ehrenbrink, B.: Recent changes in platinum group element concentrations and osmium isotopic composition in sediments from an urban lake. Environ. Sci. Technol. 38, 396–402 (2004)

    CAS  Google Scholar 

  63. Perry, B.J., Van Loon, J.C., Speller, D.V.: Dry-chlorination inductively coupled plasma mass-spectrometric method for the determination of platinum group elements in rocks. J. Anal. At. Spectrom. 7, 883–888 (1992)

    CAS  Google Scholar 

  64. Enzweiler, J., Potts, P.J.: The separation of platinum, palladium and gold from silicate rocks by the anion exchange separation of chloro complexes after a sodium peroxide fusion: an investigation of low recoveries. Talanta 42, 1411–1418 (1995)

    CAS  Google Scholar 

  65. Akatsuka, K., McLaren, J.W.: Preconcentration/separation methods for the determination of trace platinum in environmental samples by ICP-MS. In: Zereini, F., Alt, F. (eds.) Anthropogenic platinum-group element emissions. Their impact on men and environment, pp. 123–131. Springer, Berlin (2000)

    Google Scholar 

  66. Balcerzak, M.: Analytical chemistry of noble metals. In: Meyers, R.A. (ed.) Encyclopedia of analytical chemistry, pp. 8958–8984. Wiley, Chichester (2000)

    Google Scholar 

  67. Schumann, D., Fischer, St., Taut, St., Novgorodov, A.F., Misiak, R., Lebedev, N.A., Bruchertseifer, H.: Sorption of microamounts of Hf– and Ta–nuclides on Dowex 50x8 and Dowex 1x8 from HCl/HF containing aqueous solutions. J. Radioanal. Nucl. Chem. Lett. 187, 9–17 (1994)

    Google Scholar 

  68. Ely, J.C., Neal, C.R., O’Neill Jr., J.A., Jain, J.C.: Quantifying the platinum group elements (PGEs) and gold in geological samples using cation exchange pretreatment and ultrasonic nebulization inductively coupled plasma-mass spectrometry (USN-ICP-MS). Chem. Geol. 157, 219–234 (1999)

    CAS  Google Scholar 

  69. Balcerzak, M.: Platinum and hafnium. Analytical couple in ICP-MS technique. Analityka 1, 12–20 (2009) (in Polish)

    Google Scholar 

  70. Balcerzak, M.: Methods for the elimination of hafnium interference with the determination of platinum in environmental samples by ICP-MS technique. Chem. Anal. (Warsaw) 54, 135–149 (2009)

    CAS  Google Scholar 

  71. Mikołajczuk, A., Balcerzak, M.: Platinum and hafnium. The separation on Dowex 50W-X8 resin. Analityka 2, 4–5 (2009) (in Polish)

    Google Scholar 

  72. Hodge, V., Stallard, M., Koide, M., Goldberg, E.D.: Determination of platinum and iridium in marine waters, sediments, and organisms. Anal. Chem. 58, 616–620 (1986)

    CAS  Google Scholar 

  73. Chwastowska, J., Skwara, W., Sterlinska, E., Pszonicki, L.: Determination of platinum and palladium in environmental samples by graphite furnace atomic absorption spectrometry after separation on dithizone sorbent. Talanta 64, 224–229 (2004)

    CAS  Google Scholar 

  74. Gonzalez, G.M., Sanchez Rojas, F., Bosch Ojeda, C., Garcia de Torres, A., Cano Pavon, J.M.: On-line ion-exchange preconcentration and determination of traces of platinum by electrothermal atomic absorption spectrometry. Anal. Bioanal. Chem. 375, 1229–1233 (2003)

    Google Scholar 

  75. Bosch, O.C., Sanchez, R.F., Cano, P.J., Garcia de Torres, A.: Automated on-line separation-preconcentration system for platinum determination by electrothermal atomic absorption spectrometry. Anal. Chim. Acta 494, 97–103 (2003)

    Google Scholar 

  76. Lin, H., Huang, Z.J., Hu, Q., Yang, G., Zhang, G.: Determination of palladium, platinum, and rhodium by HPLC with online column enrichment using 4-carboxyphenyl-thiorhodanine as a precolumn derivatization reagent. J. Anal. Chem. 62, 58–62 (2007)

    CAS  Google Scholar 

  77. Rudolph, E., Limbeck, A., Hann, S.: Novel matrix separation—on-line pre-concentration procedure for accurate quantification of palladium in environmental samples by isotope dilution inductively coupled plasma sector field mass spectrometry. J. Anal. At. Spectrom. 21, 1287–1293 (2006)

    CAS  Google Scholar 

  78. Leśniewska, B.A., Godlewska, I., Godlewska-Żyłkiewicz, B.: The study of applicability of dithiocarbamate-coated fullerene C60 for preconcentration of palladium for graphite furnace atomic absorption spectrometric determination in environmental samples. Spectrochim. Acta B 60, 377–384 (2005)

    Google Scholar 

  79. Liang, P., Zhao, E., Ding, Q., Du, D.: Multiwalled carbon nanotubes microcolumn preconcentration and determination of gold in geological and water samples by flame atomic absorption spectrometry. Spectrochim. Acta B 63, 714–717 (2008)

    Google Scholar 

  80. Ghaseminezhad, S., Afzali, D., Taher, M.A.: Flame atomic absorption spectrometry for the determination of trace amount of rhodium after separation and preconcentration onto modified multiwalled carbon nanotubes as a new solid sorbent. Talanta 80, 168–172 (2009)

    CAS  Google Scholar 

  81. Afzali, D., Ghaseminezhad, S., Taher, M.A.: Separation and preconcentration of trace amounts of gold(III) ions using modified multiwalled carbon nanotube sorbent prior to flame atomic absorption spectrometry determination. J. AOAC Int. 93, 1287–1292 (2010)

    CAS  Google Scholar 

  82. Cheng, X.L., Chen, S.H., Wang, X., Liu, C.: Single-walled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration and determination of precious metals by ICP-MS. At. Spectrosc. 31, 75–80 (2010)

    CAS  Google Scholar 

  83. Yuan Ch, G., Zhang, Y., Wang, S., Chang, A.: Separation and preconcentration of palladium using modified multi-walled carbon nanotubes without chelating agent. Microchim. Acta 173, 361–367 (2011)

    Google Scholar 

  84. Behbahani, M., Gorji, T., Mahyari, M., Salarian, M., Bagheri, A., Shaabani, A.: Application of polypropylene amine dendrimers (POPAM)-Grafted MWCNTs hybrid materials as a new sorbent for solid-phase extraction and trace determination of gold(III) and palladium(II) in food and environmental samples. Food Anal. Methods 7, 957–966 (2014)

    Google Scholar 

  85. Leśniewska, B., Kosińska, M., Godlewska-Żyłkiewicz, B., Zambrzycka, E., Wilczewska, A.Z.: Selective solid phase extraction of platinum on an ion imprinted polymers for its electrothermal atomic absorption spectrometric determination in environmental samples. Microchim. Acta 175, 273–282 (2011)

    Google Scholar 

  86. Daniel, S., Praveen, R.S., Rao, T.P.: Ternary ion-association complex based ion imprinted polymers (IIPs) for trace determination of palladium(II) in environmental samples. Anal. Chim. Acta 570, 79–87 (2006)

    CAS  Google Scholar 

  87. Meeravali, N.N., Jiang, S.J.: Interference free ultra trace determination of Pt, Pd and Au in geological and environmental samples by inductively coupled plasma quadrupole mass spectrometry after a cloud point extraction. J. Anal. At. Spectrom. 23, 854–860 (2008)

    CAS  Google Scholar 

  88. Tresl, I., Mestek, O., Suchanek, M.: The isotope-dilution determination of platinum in soil by inductively coupled plasma mass spectrometry. Collect. Czech. Chem. Commun. 65, 1875–1887 (2000)

    CAS  Google Scholar 

  89. Komárek, J., Krásensky, P., Balcar, J., Řehulka, P.: Determination of palladium and platinum by electrothermal atomic absorption spectrometry after deposition on a graphite tube. Spectrochim. Acta B 54, 739–743 (1999)

    Google Scholar 

  90. Matusiewicz, H., Lesiński, M.: Electrodeposition sample introduction for ultra trace determinations of platinum group elements (Pt, Pd, Rh and Ru) in road dust by electrothermal atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 82, 207–223 (2002)

    CAS  Google Scholar 

  91. Perry, B.J., Barefoot, R.R., Van Loon, J.C.: Inductively coupled plasma mass spectrometry for the determination of platinum group elements and gold. Trends Anal. Chem. 14, 388–397 (1995)

    CAS  Google Scholar 

  92. Zischka, M., Wegscheider, W.: Reliability of and measurement uncertainty for the determination of Au, Pd, Pt and Rh by ICP-MS in environmentally relevant samples. In: Zereini, F., Alt, F. (eds.) Anthropogenic platinum-group element emissions. Their impact on men and environment, pp. 201–214. Springer, Berlin (2000)

    Google Scholar 

  93. Simitchiev, K., Stefanova, V., Kmetov, V., Andreev, G., Sanchez, A., Canals, A.: Investigation of ICP-MS spectral interferences in the determination of Rh, Pd and Pt in road dust: assessment of correction algorithms via uncertainty budget analysis and interference alleviation by preliminary acid leaching. Talanta 77, 889–896 (2008)

    CAS  Google Scholar 

  94. Köllensperger, G., Hann, S., Stingeder, G.: Determination of rhodium, palladium and platinum in environmental silica containing matrices: capabilities and limitations of ICP-SFMS. J. Anal. At. Spectrom. 15, 1553–1557 (2000)

    Google Scholar 

  95. Barefoot, R.R.: Determination of platinum group elements and gold in geological materials: a review of recent magnetic sector and laser ablation applications. Anal. Chim. Acta 509, 119–125 (2004)

    CAS  Google Scholar 

  96. Simpson, L.A., Thomsen, M., Alloway, B.J., Parker, A.: A dynamic reaction cell (DRC) solution to oxide-based interferences in inductively coupled plasma mass spectrometry (ICP-MS) analysis of the noble metals. J. Anal. At. Spectrom. 16, 1375–1380 (2001)

    CAS  Google Scholar 

  97. Kan, S.F., Tanner, P.A.: Determination of platinum in roadside dust samples by dynamic reaction cell-inductively coupled plasma-mass spectrometry. J. Anal. At. Spectrom. 19, 639–643 (2004)

    CAS  Google Scholar 

  98. Locatelli, C.: Voltammetric analysis of trace levels of platinum group metals – principles and applications. Electroanalysis 19, 2167–2175 (2007)

    CAS  Google Scholar 

  99. Messerschmidt, J., Alt, F., Tölg, G., Angerer, J., Schaller, K.H.: Adsorptive voltammetric procedure for the determination of platinum baseline levels in human body fluids. Fresenius J. Anal. Chem. 343, 391–394 (1992)

    CAS  Google Scholar 

  100. Helmers, E., Mergel, N.: Platinum and rhodium in a polluted environment: studying the emissions of automobile catalysts with emphasis on the application of cathodic-stripping voltammetry (CSV) rhodium analysis. Fresenius J. Anal. Chem. 362, 522–528 (1998)

    CAS  Google Scholar 

  101. Van der Horst, C., Silwana, B., Iwuoha, E., Somerset, V.: Stripping voltammetric determination of palladium, platinum and rhodium in fresh water and sediment samples from South African water resources. J. Environ. Sci. Health 47, 2084–2093 (2012)

    Google Scholar 

  102. Dalvi, A.A., Satpati, A.K., Palrecha, M.M.: Simultaneous determination of Pt and Rh by catalytic adsorptive stripping voltammetry, using hexamethylene tetramine (HMTA) as complexing agent. Talanta 75, 1382–1387 (2008)

    CAS  Google Scholar 

  103. Ulakhovich, N.A., Budnikov, G.K., Medyantseva, E.P.: Preconcentration in voltammetric analysis of platinum metal materials. Zh. Anal. Khim. 47, 1546–1566 (1992)

    CAS  Google Scholar 

  104. Dybczyński, R.: Neutron activation analysis and its contribution to inorganic trace analysis. Chem. Anal. (Warsaw) 46(133–160) (2001)

    Google Scholar 

  105. Alfassi, Z.B., Probst, T.U., Rietz, B.: Platinum determination by instrumental neutron activation analysis with special reference to the spectral interference of scandium-47 on the platinum indicator nuclide gold-199. Anal. Chim. Acta 360, 243–252 (1998)

    CAS  Google Scholar 

  106. Garuti, G., Meloni, S., Oddone, M.: Neutron activation analysis of platinum group elements and gold in reference materials: a comparison of two methods. J. Radioanal. Nucl. Chem. 245, 17–23 (2000)

    CAS  Google Scholar 

  107. Chajduk-Maleszewska, E., Dybczyński, R.: Selective separation and preconcentration of trace amounts of Pd on Duolite ES 346 resin and its use for the determination of Pd by NAA. Chem. Anal. (Warsaw) 49(281–297) (2004)

    Google Scholar 

  108. Chai, Z., Mao, X., Hu, Z., Zhang, Z., Chen, C., Feng, W., Hu, S., Ouyang, H.: Overview of the methodology of nuclear analytical techniques for speciation studies of trace elements in the biological and environmental science. Anal. Bioanal. Chem. 372, 407–411 (2002)

    CAS  Google Scholar 

  109. Wong, E., Giandomenico Ch, M.: Current status of platinum-based antitumor drugs. Chem. Rev. 99, 2451–2466 (1999)

    CAS  Google Scholar 

  110. Galanski, M., Jakupec, M.A., Keppler, B.K.: Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr. Med. Chem. 12, 2075–2094 (2005)

    CAS  Google Scholar 

  111. Küng, A., Pieper, T., Keppler, B.K.: Investigations into the interaction between tumor-inhibiting Ru(III) complexes and nucleotides by capillary electrophoresis. J. Chromatogr. B 759, 81–89 (2001)

    Google Scholar 

  112. Timerbaev, A.R., Hartinger, C.G., Aleksenko, S.S., Keppler, B.K.: Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem. Rev. 106, 2224–2248 (2006)

    CAS  Google Scholar 

  113. Reisner, E., Arion, V.B., Keppler, B.K., Pombeiro, A.J.M.: Electron-transfer activated metal-based anticancer drugs. Inorg. Chim. Acta 361, 1569–1583 (2008)

    CAS  Google Scholar 

  114. Goodisman, J., Hagrman, D., Tacka, K.A., Souid, A.K.: Analysis of cytotoxicities of platinum compounds. Cancer Chemother. Pharmacol. 57, 257–267 (2006)

    CAS  Google Scholar 

  115. Todd, R.C., Lippard, S.J.: Inhibition of transcription by platinum antitumor compounds. Metallomics 1, 280–291 (2009)

    CAS  Google Scholar 

  116. Esteban-Fernández, D., Moreno-Gordaliza, E., Cañas, B., Palacios, M.A., Gómez-Gómez, M.M.: Analytical methodologies for metallomics studies of antitumor Pt-containing drugs. Metallomics 2, 19–38 (2010)

    Google Scholar 

  117. Crider, S.E., Holbrook, R.J., Franz, K.J.: Coordination of platinum therapeutic agents to met-rich motifs of human copper transport protein. Metallomics 2, 74–83 (2010)

    CAS  Google Scholar 

  118. Groessl, M., Terenghi, M., Casini, A., Elviri, L., Łobiński, R., Dyson, P.J.: Reactivity of anticancer metallodrugs with serum proteins: new insights from size exclusion chromatography-ICP-MS and ESI-MS. J. Anal. At. Spectrom. 25, 305–313 (2010)

    CAS  Google Scholar 

  119. Brouwers, E.E.M., Tibben, M.M., Rosing, H., Hillebrand, M.J.X., Joerger, M., Schellens, J.H.M., Beijnen, J.H.: Sensitive inductively coupled plasma mass spectrometry assay for the determination of platinum originating from cisplatin, carboplatin, and oxaliplatin in human plasma ultrafiltrate. J. Mass Spectrom. 41, 1186–1194 (2006)

    CAS  Google Scholar 

  120. Morrison, J.G., White, P., McDougall, S., Firth, J.W., Woolfrey, S.G., Graham, M.A., Greenslade, D.: Validation of a highly sensitive ICP-MS method for the determination of platinum in biofluids: application to clinical pharmacokinetic studies with oxaliplatin. J. Pharm. Biomed. Anal. 24, 1–10 (2000)

    CAS  Google Scholar 

  121. Bjorn, E., Nygren, Y., Nguyen, T.T.T.N., Ericson, C., Nojd, M., Naredi, P.: Determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry. Anal. Biochem. 363, 135–142 (2007)

    Google Scholar 

  122. Brouwers, E.E.M., Tibben, M.M., Pluim, D., Rosing, H., Boot, H., Cats, A., Schellens, J.H.M., Beijnen, J.H.: Inductively coupled plasma mass spectrometric analysis of the total amount of platinum in DNA extracts from peripheral blood mononuclear cells and tissue from patients treated with cisplatin. Anal. Bioanal. Chem. 391, 577–585 (2008)

    CAS  Google Scholar 

  123. Bettinelli, M.: ICP-MS determination of Pt in biological fluids of patients treated with antitumor agents: evaluation of analytical uncertainty. Microchem. J. 79, 357–365 (2005)

    CAS  Google Scholar 

  124. Rudolph, E., Hann, S., Stingeder, G., Reiter, C.: Ultra-trace analysis of platinum in human tissue samples. Anal. Bioanal. Chem. 382, 1500–1506 (2005)

    CAS  Google Scholar 

  125. Begerow, J., Turfeld, M., Dunemann, L.: Determination of physiological noble metals in human urine using liquid-liquid extraction and Zeeman electrothermal atomic absorption spectrometry. Anal. Chim. Acta 340, 277–283 (1997)

    CAS  Google Scholar 

  126. Milačič, R., Čemažar, M., Serša, G.: Determination of platinum in tumor tissues after cisplatin therapy by electrothermal atomic absorption spectrometry. J. Pharm. Biomed. Anal. 16, 343–348 (1997)

    Google Scholar 

  127. Ivanova, E., Adams, F.: Flow injection on-line sorption preconcentration of platinum in a knotted reactor coupled with electrothermal absorption spectrometry. Fresenius J. Anal. Chem. 361, 445–450 (1998)

    CAS  Google Scholar 

  128. Kern, W., Braess, J., Bottger, B., Kaufmann, C.C., Hiddemann, W., Schleyer, E.: Oxaliplatin pharmacokinetics during a four-hour infusion. Clin. Cancer Res. 5, 761–765 (1999)

    CAS  Google Scholar 

  129. Kloft, C., Appelius, H., Siegert, W., Schunack, W., Jaehde, U.: Determination of platinum complexes in clinical samples by a rapid flameless atomic absorption spectrometry assay. Therap. Drug Monit. 21, 631–637 (1999)

    CAS  Google Scholar 

  130. Meerum, T.J.M., Tibben, M.M., Welbank, H., Schellens, J.H.M., Beijnen, J.H.: Validated method for the determination of platinum from a liposomal source (SPI-77) in human plasma using graphite furnace Zeeman atomic absorption spectrometry. Fresenius J. Anal. Chem. 366, 298–302 (2000)

    Google Scholar 

  131. Tibben, M.M., Rademaker-Lakhai, J.M., Rice, J.R., Stewart, D.R., Schellens, J.H.M., Beijnen, J.H.: Determination of total platinum in plasma and plasma ultrafiltrate, from subjects dosed with the platinum-containing N-(2-hydroxypropyl)methacrylamide copolymer AP5280, by use of graphite-furnace Zeeman atomic-absorption spectrometry. Anal. Bioanal. Chem. 373, 233–236 (2002)

    CAS  Google Scholar 

  132. Vouillamoz-Lorenz, S., Bauer, J., Lejeune, F., Decosterd, L.A.: Validation of an AAS method for the determination of platinum in biological fluids from patients receiving the oral platinum derivative JM216. J. Pharm. Biomed. Anal. 25, 465–475 (2001)

    CAS  Google Scholar 

  133. Schnurr, B., Heinrich, H., Gust, R.: Investigations on the decompositions of carboplatin in infusion solutions II. Effect of 1,1-cyclobutanedicarboxylic acid admixture. Microchim. Acta 140, 141–148 (2002)

    CAS  Google Scholar 

  134. Zimmermann, S., Messerschmidt, J., von Bohlen, A., Sures, B.: Determination of platinum, palladium and rhodium in biological samples by electrothermal atomic absorption spectrometry as compared with adsorptive cathodic stripping voltammetry and total-reflection X-ray fluorescence analysis. Anal. Chim. Acta 498, 93–104 (2003)

    CAS  Google Scholar 

  135. Brouwers, E.E.M., Tibben, M.M., Joerger, M., van Tellingen, O., Rosing, H., Schellens, J.H.M., Beijnen, J.H.: Determination of oxaliplatin in human plasma and plasma ultrafiltrate by graphite-furnace atomic absorption spectrometry. Anal. Bioanal. Chem. 382, 1484–1490 (2005)

    CAS  Google Scholar 

  136. Schierl, R., Rohrer, B., Hohnloser, H.: Long term platinum excretion in patients treated with cisplatin. Cancer Chemother. Pharmacol. 36, 75–78 (1995)

    CAS  Google Scholar 

  137. Gelevert, T., Messerschmidt, J., Meinardi, M.T., Alt, F., Gietema, J.A., Franke, J.P., Sleijfer, D.T., Uges, D.R.A.: Adsorptive voltammetry to determine platinum levels in plasma from testicular cancer patients treated with cisplatin. Therap. Drug Monit. 23, 169–173 (2001)

    CAS  Google Scholar 

  138. Zimmermann, S., Menzel, C.M., Berner, Z., Eckhardt, J.D., Stüben, D., Alt, F., Messerschmidt, J., Taraschewski, H., Sures, B.: Trace analysis of platinum in biological samples: a comparison between sector field ICP-MS and adsorptive cathodic stripping voltammetry following different digestion procedures. Anal. Chim. Acta 439, 203–209 (2001)

    CAS  Google Scholar 

  139. Trebert, H.S., Lux, F., Karl, J., Spruss, T., Schönenberger, H.: Determination of platinum and biologically important trace elements in structure–activity relationship studies on platinum-containing anticancer drugs. Special procedures for removing phosphorus-32 as well as for the estimation of molybdenum-99 and gold-199. J. Radioanal. Nucl. Chem. 113, 461–467 (1987)

    Google Scholar 

  140. Taskaev, E., Karaivanova, M., Grigorov, T.: Determination of platinum and gold in biological materials by neutron activation analysis. J. Radioanal. Nucl. Chem. 120, 75–82 (1988)

    CAS  Google Scholar 

  141. Rietz, B., Krarup-Hansen, A., Rørth, M.: Determination of platinum by radiochemical neutron activation analysis in neural tissues from rats, monkeys and patients treated with cisplatin. Anal. Chim. Acta 426, 119–126 (2001)

    CAS  Google Scholar 

  142. Einhäuser, T.J., Galanski, M., Keppler, B.K.: Determination of platinum in protein-bound CDDP and DPD by inductively coupled plasma optical emission spectrometry and electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 11, 747–750 (1996)

    Google Scholar 

  143. Deforce, D.L.D., Kokotos, G., Esmans, E.L., De Leenheer, A.P., Van den Eeckhout, E.G.: Preparative capillary zone electrophoresis in combination with off-line graphite furnace atomic absorption for the analysis of DNA complexes formed by a new aminocoumarine platinum(II) compound. Electrophoresis 19, 2454–2458 (1998)

    CAS  Google Scholar 

  144. Sommer, L., Vlašánková, R.: Survey of the potential of high-performance liquid chromatography and capillary zone electrophoresis for the determination of platinum and platinum-group metals. Chromatographia 52, 692–702 (2000)

    CAS  Google Scholar 

  145. Warnke, U., Gysler, J., Hofte, B., Tjaden, U.R., van der Greef, J., Kloft, C., Schunack, W., Jaehde, U.: Separation and identification of platinum adducts with DNA nucleotides by capillary zone electrophoresis and capillary zone electrophoresis coupled to mass spectrometry. Electrophoresis 22, 97–103 (2001)

    CAS  Google Scholar 

  146. Timerbaev, A.R., Küng, A., Keppler, B.K.: Capillary electrophoresis of platinum-group elements. Analytical, speciation and biochemical studies. J. Chromatogr. A 945, 25–44 (2002)

    CAS  Google Scholar 

  147. Hann, S., Stefánka, Z., Lenz, K., Stingeder, G.: Novel separation method for highly sensitive speciation of cancerostatic platinum compounds by HPLC-ICP-MS. Anal. Bioanal. Chem. 381, 405–412 (2005)

    CAS  Google Scholar 

  148. Stokvis, E., Rosing, H., Beijnen, J.H.: Liquid chromatography-mass spectrometry for the quantitative bioanalysis of anticancer drugs. Mass Spectrom. Rev. 24, 887–917 (2005)

    CAS  Google Scholar 

  149. Bytzek, A.K., Reithofer, M.R., Galanski, M., Groessl, M., Keppler, B.K., Hartinger, C.G.: The first example of MEEKC-ICP-MS coupling and its application for the analysis of anticancer platinum complexes. Electrophoresis 31, 1144–1150 (2010)

    CAS  Google Scholar 

  150. Ito, H., Yamaguchi, H., Fujikawa, A., Tanaka, N., Furugen, A., Miyamori, K., Takahashi, N., Ogura, J., Kobayashi, M., Yamada, T., Mano, N., Iseki, K.: A full validated hydrophilic interaction liquid chromatography-tandem mass spectrometric method for the quantification of oxaliplatin in human plasma ultrafiltrates. J. Pharm. Biomed. Anal. 71, 99–103 (2012)

    CAS  Google Scholar 

  151. Groessl, M., Hartinger, C.G.: Anticancer metallodrug research analytically painting the “omics” picture–current developments and future trends. Anal. Bioanal. Chem. 405, 1791–1808 (2013)

    CAS  Google Scholar 

  152. Yang, Z., Sweedler, J.V.: Application of capillary electrophoresis for the early diagnosis of cancer. Anal. Bioanal. Chem. 406, 4013–4031 (2014)

    CAS  Google Scholar 

  153. Falta, T., Heffeter, P., Mohamed, A., Berger, W., Hann, S., Koellensperger, G.: Quantitative determination of intact free cisplatin in cell models by LC-ICP-MS. J. Anal. At. Spectrom. 26, 109–115 (2011)

    CAS  Google Scholar 

  154. Bell, D.N., Liu, J.J., Tingle, M.D., McKeage, M.J.: Specific determination of intact cisplatin and monohydrated cisplatin in human plasma and culture medium ultrafiltrates using HPLC on-line with inductively coupled plasma mass spectrometry. J. Chromatogr. B 837, 29–34 (2006)

    CAS  Google Scholar 

  155. Smith, C.J., Wilson, I.D., Abou-Shakra, F.R., Payne, R., Grisedale, H., Long, A., Roberts, D., Malone, M.: Analysis of a [14C]-labelled platinum anticancer compound in dosing formulations and urine using a combination of HPLC-ICPMS and flow scintillation counting. Chromatographia 55, S151–S155 (2002)

    CAS  Google Scholar 

  156. Smith, C.J., Wilson, I.D., Abou-Shakra, F., Payne, R., Parry, T.C., Sinclair, P., Roberts, D.W.: A comparison of the quantitative methods for the analysis of the platinum-containing anticancer drug {cis-amminedichloro(2-methylpyridine)]-platinum(II)} (ZD0473) by HPLC coupled to either a triple quadrupole mass spectrometer or an inductively coupled plasma mass spectrometer. Anal. Chem. 75, 1463–1469 (2003)

    CAS  Google Scholar 

  157. Nygren, Y., Hemström, P., Åstot, C., Naredi, P., Björn, E.: Hydrophilic interaction liquid chromatography (HILIC) coupled to inductively coupled plasma mass spectrometry (ICPMS) utilizing a mobile phase with a low-volatile organic modifier for the determination of cisplatin, and its monohydrolyzed metabolite. J. Anal. At. Spectrom. 23, 948–954 (2008)

    CAS  Google Scholar 

  158. Koellensperger, G., Stefanka, Z., Meelich, K., Galanski, M., Keppler, B.K., Stingeder, G., Hann, S.: Species specific IDMS for accurate quantification of carboplatin in urine by LC-ESI-TOFMS and LC-ICP-QMS. J. Anal. At. Spectrom. 23, 29–36 (2008)

    CAS  Google Scholar 

  159. Esteban-Fernández, D., Montes-Bayón, M., Blanco, G.E., Gómez- Gómez, M.M., Palacios, M.A., Sanz-Medel, A.: Atomic (HPLC-ICP-MS) and molecular mass spectrometry (ESI-Q-TOF) to study cis-platin interactions with serum proteins. J. Anal. At. Spectrom. 23, 378–384 (2008)

    Google Scholar 

  160. Mandal, R., Sawyer, M.B., Li, X.F.: Mass spectrometry study of hemoglobin-oxaliplatin complexes in colorectal cancer patients and potential association with chemotherapeutic responses. Rapid Commun. Mass Spectrom. 20, 2533–2538 (2006)

    CAS  Google Scholar 

  161. Oe, T., Tian, Y., O’Dwyer, P.J., Roberts, D.W., Bailey, C.J., Blair, I.A.: Determination of the platinum drug cis-amminedichloro(2-methylpyridine)platinum(II) in human urine by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 792, 217–227 (2003)

    CAS  Google Scholar 

  162. Hartinger, C.G., Ang, W.H., Casini, A., Messori, L., Keppler, B.K., Dyson, P.J.: Mass spectrometric analysis of ubiquitin-platinum interactions of leading anticancer drugs: MALDI versus ESI. J. Anal. At. Spectrom. 22, 960–967 (2007)

    CAS  Google Scholar 

  163. Stefanka, Z., Hann, S., Koellensperger, G., Stingeder, G.: Investigation of the reaction of cisplatin with methionine in aqueous media using HPLC-ICP-DRCMS. J. Anal. At. Spectrom. 19, 894–898 (2004)

    CAS  Google Scholar 

  164. Hann, S., Zenker, A., Galanski, M., Bereuter, T.L., Stingeder, G., Keppler, B.K.: HPIC-UV-ICP-SFMS study of the interaction of cisplatin with guanosine monophosphate. Fresenius J. Anal. Chem. 370, 581–586 (2001)

    CAS  Google Scholar 

  165. Iijima, H., Patrzyc, H.B., Dawidzik, J.B., Budzinski, E.E., Cheng, H.C., Freund, H.G., Box, H.C.: Measurement of DNA adducts in cells exposed to cisplatin. Anal. Biochem. 333, 65–71 (2004)

    CAS  Google Scholar 

  166. Garcia, S.D., Montes-Bayón, M., Blanco, G.E., Sanz-Medel, A.: Speciation studies of cis-platin adducts with DNA nucleotides via elemental specific detection (P and Pt) using liquid chromatography-inductively coupled plasma-mass spectrometry and structural characterization by electrospray mass spectrometry. J. Anal. At. Spectrom. 21, 861–868 (2006)

    Google Scholar 

  167. Hartinger, C.G., Schluga, P., Galanski, M., Baumgartner, C., Timerbaev, A.R., Keppler, B.K.: Tumour-inhibiting platinum(II) complexes with aminoalcohol ligands: comparison of the mode of action by capillary electrophoresis and electrospray ionization-mass spectrometry. Electrophoresis 24, 2038–2044 (2003)

    CAS  Google Scholar 

  168. Timerbaev, A.R., Alexenko, S.S., Połeć-Pawlak, K., Ruzik, R., Semenova, O., Hartinger, C.G., Oszwałdowski, S., Galanski, M., Jarosz, M., Keppler, B.K.: Platinum metallodrug-protein binding studies by capillary electrophoresis-inductively coupled plasma-mass spectrometry: characterization of interactions between Pt(II) complexes and human serum albumin. Electrophoresis 25, 1988–1995 (2004)

    CAS  Google Scholar 

  169. Rudnev, A.V., Aleksenko, S.S., Semenova, O., Hartinger, C.G., Timerbaev, A.R., Keppler, B.K.: Determination of binding constants and stoichiometrics for platinum anticancer drugs and serum transport proteins by capillary electrophoresis using the Hummel-Dreyer method. J. Sep. Sci. 28, 121–127 (2005)

    CAS  Google Scholar 

  170. Schluga, P., Hartinger, C.G., Galanski, M., Meelich, K., Timerbaev, A.R., Keppler, B.K.: Tumour-inhibiting platinum(II) complexes with aminoalcohol ligands: biologically important transformations studied by micellar electrokinetic chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. Analyst 130, 1383–1389 (2005)

    CAS  Google Scholar 

  171. Huang, Z., Timerbaev, A.R., Keppler, B.K., Hirokawa, T.: Determination of cisplatin and its hydrolytic metabolite in human serum by capillary electrophoresis techniques. J. Chromatogr. A 1106, 75–79 (2006)

    CAS  Google Scholar 

  172. Hartinger, C.G., Keppler, B.K.: CE in anticancer metallodrug research - an update. Electrophoresis 28, 3436–3446 (2007)

    CAS  Google Scholar 

  173. Brüchert, W., Krüger, R., Tholey, A., Montes-Bayón, M., Bettmer, J.: A novel approach for analysis of oligonucleotide-cisplatin interactions by continuous elution gel electrophoresis coupled to isotope dilution inductively coupled plasma mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 29, 1451–1459 (2008)

    Google Scholar 

  174. Allardyce, C.S., Dyson, P.J.: Ruthenium in medicine: current clinical uses and future prospects. Platin. Met. Rev. 45, 62–69 (2001)

    CAS  Google Scholar 

  175. Egger, A.E., Hartinger Ch, G., Renfrew, A.K., Dyson, P.J.: Metabolization of [Ru(η6-C6H5CF3)(pta)Cl2]: a cytotoxic RAPTA-type complex with a strongly electron withdrawing arene ligand. J. Biol. Inorg. Chem. 15, 919–927 (2010)

    CAS  Google Scholar 

  176. Nazarov, A.A., Hartinger, C.G., Dyson, P.J.: Opening the lid on piano-stool complexes: an account of ruthenium(II)–arene complexes with medicinal applications. J. Organomet. Chem. 751, 251–260 (2014)

    CAS  Google Scholar 

  177. Singh, A.K., Pandey, D.S., Xu, Q., Braunstein, P.: Recent advances in supramolecular and biological aspects of arene ruthenium(II) complexes. Coord. Chem. Rev. 270–271, 31–56 (2014)

    Google Scholar 

  178. Kratz, F., Hartmann, M., Keppler, B.K., Messori, L.: The binding properties of two antitumor ruthenium(III) complexes to apotransferrin. J. Biol. Chem. 269, 2581–2588 (1994)

    CAS  Google Scholar 

  179. Pongratz, M., Schluga, P., Jakupec, M.A., Arion, V.B., Hartinger, C.G., Allmaier, G., Keppler, B.K.: Transferrin binding and transferring-mediated cellular uptake of the ruthenium coordination compound KP1019, studied by means of AAS, ESI-MS and CD spectroscopy. J. Anal. At. Spectrom. 19, 46–51 (2004)

    CAS  Google Scholar 

  180. Sulyok, M., Hann, S., Hartinger, C.G., Kepler, B.K., Stingeder, G., Koellensperger, G.: Two dimensional separation schemes for investigation of the interaction of an anticancer ruthenium(III) compound with plasma proteins. J. Anal. At. Spectrom. 20, 856–863 (2005)

    CAS  Google Scholar 

  181. Ravera, M., Baracco, S., Cassino, C., Colangelo, D., Bagni, G., Sava, G., Osella, D.: Electrochemical measurements confirm the preferential bonding of the antimetastatic complex [ImH][RuCl4(DMSO)(Im)] (NAMI-A) with proteins and the weak interaction with nucleobases. J. Inorg. Biochem. 98, 984–990 (2004)

    CAS  Google Scholar 

  182. Dömötör, O., Hartinger, C.G., Bytzek, A.K., Kiss, T., Keppler, B.K., Enyedy, E.A.: Characterization of the binding sites of the anticancer ruthenium(III) complexes KP1019 and KP1339 on human serum albumin via competition studies. J. Biol. Inorg. Chem. 18, 9–17 (2013)

    Google Scholar 

  183. Timerbaev, A.R., Rudnev, A.V., Semenova, O., Hartinger, C.G., Keppler, B.K.: Comparative binding of antitumor indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)] to serum transport proteins assayed by capillary zone electrophoresis. Anal. Biochem. 341, 326–333 (2005)

    CAS  Google Scholar 

  184. Połeć-Pawlak, K., Abramski, J.K., Semenova, O., Hartinger, C.G., Timerbaev, A.R., Kepler, B.K., Jarosz, M.: Platinum group metallodrug-protein binding studies by capillary electrophoresis–inductively couples plasma-mass spectrometry: a further insight into the reactivity of a novel antitumor ruthenium(III) complex toward human serum proteins. Electrophoresis 27, 1128–1135 (2006)

    Google Scholar 

  185. Cetinbas, N., Webb, M.I., Dubland, J.A., Walsby, C.J.: Serum-protein interactions with anticancer Ru(III) complexes KP1019 and KP418 characterized by EPR. J. Biol. Inorg. Chem. 15, 131–145 (2010)

    CAS  Google Scholar 

  186. Heffeter, P., Böck, K., Atil, B., Reza Hoda, M.A., Körner, W., Bartel, C., Jungwirth, U., Keppler, B.K., Micksche, M., Berger, W., Koellensperger, G.: Intracellular protein binding patterns of the anticancer ruthenium drugs KP1019 and KP1339. J. Biol. Inorg. Chem. 15, 737–748 (2010)

    CAS  Google Scholar 

  187. Casini, A., Gabbiani, C., Michelucci, E., Pieraccini, G., Moneti, G., Dyson, P.J., Messori, L.: Exploring metallodrug-protein interactions by mass spectrometry: comparisons between platinum coordination complexes and an organometallic ruthenium compound. J. Biol. Inorg. Chem. 14, 761–770 (2009)

    CAS  Google Scholar 

  188. Groessl, M., Tsybin, Y.O., Hartinger, C.G., Keppler, B.K., Dyson, P.J.: Ruthenium versus platinum: interactions of anticancer metallodrugs with duplex oligonucleotides characterized by electrospray ionization mass spectrometry. J. Biol. Inorg. Chem. 15, 677–688 (2010)

    CAS  Google Scholar 

  189. Barefoot, R.R.: Distribution and speciation of platinum group elements in environmental matrices. Trends Anal. Chem. 18, 702–707 (1999)

    CAS  Google Scholar 

  190. Schäfer, J., Hannker, D., Eckhardt, J.D., Stüben, D.: Uptake of traffic-related heavy metals and platinum group elements (PGE) by plants. Sci. Total Environ. 215, 59–67 (1998)

    Google Scholar 

  191. Niemelä, M., Perämäki, P., Piispanen, J., Poikolainen, J.: Determination of platinum and rhodium in dust and plant samples using microwave-assisted sample digestion and ICP-MS. Anal. Chim. Acta 521, 137–142 (2004)

    Google Scholar 

  192. Djingova, R., Heidenreich, H., Kovacheva, P., Markert, B.: On the determination of platinum group elements in environmental materials by inductively coupled plasma mass spectrometry and microwave digestion. Anal. Chim. Acta 489, 245–251 (2003)

    CAS  Google Scholar 

  193. Beinrohr, E., Lee, M.L., Tschöpel, P., Tölg, G.: Determination of platinum in biotic and environmental samples by graphite furnace atomic absorption spectrometry after its electrodeposition into a graphite tube packed with reticulated vitreous carbon. Fresenius J. Anal. Chem. 346, 689–692 (1993)

    CAS  Google Scholar 

  194. Akrivi, A.A., Tsogas, G.Z., Giokas, D.L., Vlessidis, A.G.: Analytical determination and bio-monitoring of platinum group elements in roadside grass using microwave assisted digestion and electrothermal atomic absorption spectrometry. Anal. Lett. 45, 526–538 (2012)

    CAS  Google Scholar 

  195. Locatelli, C., Melucci, D., Torsi, G.: Determination of platinum-group metals and lead in vegetable environmental bio-monitors by voltammetric and spectroscopic techniques: critical comparison. Anal. Bioanal. Chem. 382, 1567–1573 (2005)

    CAS  Google Scholar 

  196. Desimoni, E., Brunetti, B., Bacchella, R.: Cathodic stripping voltammetric determination of platinum in some foods and beverages at ng/g level under statistical control. Electroanalysis 14, 459–461 (2002)

    CAS  Google Scholar 

  197. León, C., Emons, H., Ostapczuk, P., Hoppstock, K.: Simultaneous ultratrace determination of platinum and rhodium by cathodic stripping voltammetry. Anal. Chim. Acta 356, 99–104 (1997)

    Google Scholar 

  198. Kołodziej, M., Baranowska, I., Matyja, A.: Determination of platinum in plant samples by voltammetric analysis. Electroanalysis 19, 1585–1589 (2007)

    Google Scholar 

  199. Weber, G., Jakubowski, N., Stuewer, D.: Speciation of platinum in plant material. A combination of chromatography, elemental mass spectrometry and electrochemistry. In: Zereini, F., Alt, F. (eds.) Anthropogenic platinum-group element emissions. Their impact on men and environment, pp. 183–190. Springer, Berlin (2000)

    Google Scholar 

  200. Jakubowski, N., Thomas, C., Klueppel, D., Stuewer, D.: Speciation of metals in biomolecules by use of inductively coupled plasma mass spectrometry with low and high mass resolution. Analysis 26, M37–M43 (1998)

    CAS  Google Scholar 

  201. Alt, F., Weber, G., Messerschmidt, J., von Bohlen, A., Kastenholz, B., Guenther, K.: Bonding states of palladium in phytosystems: first results for endive. Anal. Lett. 35, 1349–1359 (2002)

    CAS  Google Scholar 

  202. Messerschmidt, J., Alt, F., Tölg, G.: Platinum species analysis in plant material by gel permeation chromatography. Anal. Chim. Acta 291, 161–167 (1994)

    CAS  Google Scholar 

  203. Ward, N.I., Dudding, L.M.: Platinum emissions and levels in motorway dust samples: influence of traffic characteristics. Sci. Total Environ. 334–335, 457–463 (2004)

    Google Scholar 

  204. Gómez, B., Palacios, M.A., Gómez, M., Sanchez, J.L., Morrison, G., Rauch, S., McLeod, C., Ma, R., Caroli, S., Alimonti, A., Petrucci, F., Bocca, B., Schramel, P., Zischka, M., Pettersson, C., Wass, U.: Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Sci. Total Environ. 299, 1–19 (2002)

    Google Scholar 

  205. Rauch, S., Lu, M., Morrison, G.M.: Heterogeneity of platinum-group metals in airborne particles. Environ. Sci. Technol. 35, 595–599 (2001)

    CAS  Google Scholar 

  206. Zaray, G., Ovari, M., Salma, I., Steffan, I., Zeiner, M., Caroli, S.: Determination of platinum in urine and airborne particulate matter from Budapest and Vienna. Microchem. J. 76, 31–34 (2004)

    CAS  Google Scholar 

  207. Vanhaecke, F., Resano, M., Pruneda-Lopez, M., Moens, L.: Determination of platinum and rhodium in environmental matrices by solid sampling electrothermal vaporization-inductively coupled plasma mass spectrometry. Anal. Chem. 74, 6040–6048 (2002)

    CAS  Google Scholar 

  208. Rauch, S., Morrison, G.M., Moldovan, M.: Scanning laser ablation-ICP-MS tracking of platinum group elements in urban particles. Sci. Total Environ. 286, 243–251 (2002)

    CAS  Google Scholar 

  209. Alsenz, H., Zereini, F., Wiseman, C.L.S., Puttmann, W.: Analysis of palladium concentrations in airborne particulate matter with reductive co-precipitation, He collision gas, and ID-ICP-Q-MS. Anal. Bioanal. Chem. 395, 1919–1927 (2009)

    CAS  Google Scholar 

  210. Meeravali, N.N., Kumar, S.J., Jiang, S.J.: An acid induced mixed-micelle mediated cloud point extraction for the separation and pre-concentration of platinum from road dust and determination by inductively coupled plasma mass spectrometry. Anal. Methods 2, 1101–1105 (2010)

    CAS  Google Scholar 

  211. Limbeck, A., Rudolph, E., Hann, S., Koellensperger, G., Stingeder, G., Rendl, J.: Flow injection on-line pre-concentration of platinum coupled with electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 19, 1474–1478 (2004)

    CAS  Google Scholar 

  212. Limbeck, A., Rendl, J., Puxbaum, H.: ET AAS determination of palladium in environmental samples with online preconcentration and matrix separation. J. Anal. At. Spectrom. 18, 161–165 (2003)

    CAS  Google Scholar 

  213. Tokalioglu, S., Oymak, T., Kartal, S.: Determination of palladium in various samples by atomic absorption spectrometry after preconcentration with dimethylglyoxime on silica gel. Anal. Chim. Acta 511, 255–260 (2004)

    CAS  Google Scholar 

  214. Tsogas, G.Z., Giokas, D.L., Vlessidis, A.G., Evmiridis, N.P.: On the re-assessment of the optimum conditions for the determination of platinum, palladium and rhodium in environmental samples by electrothermal atomic absorption spectrometry and microwave digestion. Talanta 76, 635–641 (2008)

    CAS  Google Scholar 

  215. Probst, T.U., Rietz, B., Alfassi, Z.B.: Platinum concentrations in Danish air samples determined by instrumental neutron activation analysis. J. Environ. Monit. 3, 217–219 (2001)

    CAS  Google Scholar 

  216. Giaveri, G., Rizzio, E., Gallorini, M.: Preconcentration and preseparation procedure for platinum determination at trace levels by neutron activation analysis. Anal. Chem. 73, 3488–3491 (2001)

    CAS  Google Scholar 

  217. Fariseo, P., Speziali, M., Herborg, C., Orvini, E.: Platinum determination by NAA in two road dust matrices. Microchem. J. 79, 43–47 (2005)

    CAS  Google Scholar 

  218. Schierl, R., Fruhman, G.: Airborne platinum concentrations in Munich city buses. Sci. Total Environ. 182, 21–23 (1996)

    CAS  Google Scholar 

  219. Wei, C., Morrison, G.M.: Platinum in road dusts and urban river sediments. Sci. Total Environ. 146–147, 169–174 (1994)

    Google Scholar 

  220. Alt, F., Bambauer, A., Hoppstock, K., Mergler, B., Tölg, G.: Platinum traces in airborne particulate matter. Determination of whole content, particle size distribution and soluble platinum. Fresenius J. Anal. Chem. 346, 693–696 (1993)

    CAS  Google Scholar 

  221. Sako, A., Lopes, L., Roychoudhury, A.N.: Adsorption and surface complexation modeling of palladium, rhodium and platinum in surficial semi-arid soils and sediment. Appl. Geochem. 24, 86–95 (2009)

    CAS  Google Scholar 

  222. Schäfer, J., Puchelt, H.: Platinum-group-metals (PGM) emitted from automobile catalytic converters and their distribution in roadside soils. J. Geochem. Explor. 64, 307–314 (1998)

    Google Scholar 

  223. Beccaloni, E., Coccia, A.M., Musmeci, L., Stacul, E., Ziemacki, G.: Chemical and microbial characterization of indigenous topsoil and mosses in green urban areas of Rome. Microchem. J. 79, 271–289 (2005)

    CAS  Google Scholar 

  224. Motelica-Heino, M., Rauch, S., Morrison, G.M., Donard, O.F.X.: Determination of palladium, platinum and rhodium concentrations in urban road sediments by laser ablation-ICP-MS. Anal. Chim. Acta 436, 233–244 (2001)

    CAS  Google Scholar 

  225. Barefoot, R.R.: Determination of platinum at trace levels in environmental and biological materials. Environ. Sci. Technol. 31, 309–314 (1997)

    CAS  Google Scholar 

  226. Barefoot, R.R., Van Loon, J.C.: Recent advances in the determination of the platinum group elements and gold. Talanta 49, 1–14 (1999)

    CAS  Google Scholar 

  227. Meisel, T., Moser, J.: Reference materials for geochemical PGE analysis: new analytical data for Ru, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. Chem. Geol. 208, 319–338 (2004)

    CAS  Google Scholar 

  228. Sutherland, R.A.: Platinum-group element concentrations in BCR-723: a quantitative review of published analyses. Anal. Chim. Acta 582, 201–207 (2007)

    CAS  Google Scholar 

  229. Bouma, M., Nuijen, B., Jansen, M.T., Sava, G., Picotti, F., Flaibani, A., Bult, A., Beijnen, J.H.: Development of a LC method for pharmaceutical quality control of the antimetastatic ruthenium complex NAMI-A. J. Pharm. Biomed. Anal. 31, 215–228 (2003)

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support of the work by the Warsaw University of Technology is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Balcerzak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balcerzak, M. (2016). Quantification of Noble Metals in Biological and Environmental Samples. In: Baranowska, I. (eds) Handbook of Trace Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-19614-5_13

Download citation

Publish with us

Policies and ethics