Skip to main content

Modern Methodology and New Tools for Planetary Mapping

  • Chapter
  • First Online:
Progress in Cartography

Abstract

The paper describes a workflow of planetary mapping using the newest remote sensing data and modern GIS technologies. We present the newly developed tools for planetary surface analysis based on cartographic measurements. The data management and design approaches for planetary mapping are described, and the main results of implementation of tools and methods are presented, including new planetary maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archinal BA, A′Hearn MF, Bowell E, Conrad A, Consolmagno GJ, Courtin R, Fukushima T, Hestroffer D, Hilton JL, Krasinsky GA, Neumann G, Oberst J, Seidelmann PK, Stooke P, Tholen DJ, Thomas PC, Williams IP (2011) Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest Mech Dyn Astron 109(2):101–135

    Google Scholar 

  • Basilevsky AT, Kreslavsky MA, Karachevtseva IP, Gusakova EN (2014) Morphometry of small impact craters in the Lunokhod-1 and Lunokhod-2 study areas. Planet Space Sci 92:77–87

    Article  Google Scholar 

  • Bugaevsky LM, Krasnopevtseva BV, Shingareva KB (1992) Phobos map and Phobos globe. Elsevier Adv Space Res 12(9):17–21

    Google Scholar 

  • De Rosa D, Bussey B, Cahill JT, Lutz T, Crawford IA, Hackwill T, van Gasselt S, Neukum G, Witte L, McGovern A, Grindrod PM, Carpenter JD (2012) Characterisation of potential landing sites for the European space agency’s lunar lander project. Planet Space Sci 74(1):224–246

    Article  Google Scholar 

  • Elgner S, Stark A, Oberst J, Perry ME, Zuber MT, Robinson MS, Solomon SC (2014) Mercury’s global shape and topography from MESSENGER limb images. Planet Space Sci 103:299–308

    Article  Google Scholar 

  • Garov A, Karachevtseva I, Kozlova N, Matveev E, Zubarev A, Patratiy V (2015a). Web-mapping and intellectualization of the planetary data analysis based on location services. In: 3D web GIS. 12th symposium on location based services. Augsburg, Germany. (September 16–18)

    Google Scholar 

  • Garov AS, Karachevtseva IP, Matveev EV, Zubarev AE, Patratiy VD (2015b) 3D planetary geoportal as online laboratory for geo-collaboraition of scientific community. In: ISPRS working group IV/8 “Planetary mapping and spatial databases” meeting. Berlin, Germany. http://www.dlr.de/pf/Portaldata/6/Resources/dokumente/abt_pd/isprs/berlin_2015/Garov_ISPRS_IV8_2015.pdf. (September, 24–25)

  • Greeley R, Batson G (1990) Planetary mapping. Cambridge University Press

    Google Scholar 

  • Hare TM, Hayward RK, Blue JS, Archinal BA, Robinson MS, Speyerer EJ, Wagner RV, Smith DE, Zuber MT, Neumann GA, Mazarico E (2015) Image mosaic and topographic map of the Moon: US geological survey scientific investigations map 3316, 2 sheets. http://dx.doi.org/10.3133/sim3316

  • Karachevtseva IP, Kokhanov AA, Konopikhin AA, Nadezhdina IE, Zubarev AE, Patratii VD, Kozlova NA, Uchaev DV, Uchaev DV, Malinnikov VA, Oberst J (2015a) Cartographic and geodesic methods to characterize the potential landing sites for the Russian missions. Solar Syst Res 49(2):92–109. doi:10.1134/S003809461502002

  • Karachevtseva I, Kokhanov A, Rodionova J, Konopikhin A, Zubarev A, Nadezhdina I, Mitrokhina L, Patratiy V, Oberst J (2015b) Development of a new Phobos atlas based on Mars Express image data. Planet Space Sci 108:24–30. doi:10.1016/j.pss.2014.11.024

    Article  Google Scholar 

  • Kneissl T, van Gasselt S, Neukum G (2011) Map-projection independent crater size frequency determination in GIS environments—new software tool for ArcGIS. Planet Space Sci 59(11–12):1243–1254

    Article  Google Scholar 

  • Kozlova N, Zubarev A, Karachevtseva I, Nadezhdina I, Kokhanov A, Patraty V, Mitrokhina L, Oberst J (2014) Some aspects of modern photogrammetric image processing of Soviet Lunokhod panoramas and their implementation for new studies of lunar surface. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, 2014, vol XL-4, 2014 ISPRS technical commission IV symposium. Suzhou, China. doi:10.5194/isprsarchives-XL-4-121-2014, pp 121–126

    Google Scholar 

  • Kokhanov AA, Kreslavsky MA, Karachevtseva IP (2015) Small impact craters in the polar regions of the Moon: peculiarities of morphometric characteristics. Sol Syst Res 49(5):295–302. doi:10.1134/S0038094615050068

    Article  Google Scholar 

  • Kreslavsky MA, Head JW, Neumann GA, Rosenburg MA, Aharonson O, Smith DE, Zuber MT (2013) Lunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: scale dependence and correlation with geologic features and units. Icarus 226:52–66

    Article  Google Scholar 

  • Kreslavsky MA, Head JW, Neumann GA, Zuber MT, Smith DE (2014) Kilometer-scale topographic roughness of Mercury: correlation with geologic features and units. Geophys Res Lett 41(23):8245–8251. doi:10.1002/2014GL062162

    Google Scholar 

  • Michael GG, Platz T, Kneissl T, Schmedemann N (2012) Planetary surface dating from crater size–frequency distribution measurements: Spatial randomness and clustering. Icarus 218(1):169–177

    Article  Google Scholar 

  • Morley J, Sprinks J, Muller J-P, Tao Y, Paar G, Huber B, Bauer A, Willner K, Traxler C, Garov A, Karachevtseva I (2014) Contextualising and analysing planetary rover image products through the Web-Based PRoGIS. Geophysical Research Abstracts, Vol 16. EGU2014-16013, EGU General Assembly 2014

    Google Scholar 

  • Nadezhdina IE, Zubarev AE (2014) Formation of a reference coordinate network as a basis for studying the physical parameters of Phobos. Sol Syst Res 48(4):269–278

    Article  Google Scholar 

  • Nass A, van Gasselt S, Jaumann R, Asche H (2011) Implementation of cartographic symbols for planetary mapping in geographic information system. Planet Space Sci 59(11–12):1255–1264

    Article  Google Scholar 

  • Nass A, van Gasselt S (2013) A framework for planetary mapping. In: Buchroithner M et al (eds) Cartography from pole to pole. Lecture notes in geoinformation and cartography, 2014. Springer, Berlin, pp 261–270

    Google Scholar 

  • Neukum G, Jaumann R, HRSC Co-Investigator and Experiment Team (2004) HRSC: the high resolution stereo camera of Mars Express. In: Wilson A (ed), Chicarro A (Scientific Coordination) Mars Express: the scientific payload. ESA SP-1240. ESA Publications Division, Noordwijk, Netherlands. ISBN: 92-9092-556-6

    Google Scholar 

  • Nyrtsov MV, Fleis ME, Borisov MM, Stooke PJ (2014) Jacobi conformal projection of the triaxial ellipsoid: new projection for mapping of small celestial bodies. In: Buchroithner M et al (eds) Cartography from pole to pole, lecture notes in geoinformation and cartography. Springer, Berlin

    Google Scholar 

  • Oberst J, Zubarev A, Nadezhdina I, Rambaux N (2014) Phobos control point network and rotation model. Planet Space Sci 102:45–50. doi:10.1016/j.pss.2014.03.006

    Google Scholar 

  • Phobos Atlas (Res ed Karachevtseva IP) (2015) MIIGAiK, Moscow, 220 p. ISBN 523.4:912.44. (il. 85, tab. 17, bibl. 195, app. 2. 43 maps)

    Google Scholar 

  • Rodionova Z, Karachevtseva I, Lazarev E, Kokhanov A (2015) Mapping of the terrestrial planets satellites: the Moon and Phobos. In: 27th International Cartographic Conference, 16th General Assembly. Rio de Janeiro. ISBN 978-85-88783-11-9. (August, 23–28, 2015)

    Google Scholar 

  • Salamunićcar G, Lončarić S, Grumpe A, Wöhler C (2013) Hybrid method for crater detection based on topography reconstruction from optical images and the new LU78287GT catalogue of Lunar impact craters. Adv Space Res 12(53):1783–1797

    Google Scholar 

  • Shevchenko V, Rodionova Z, Michael G (2016) Lunar and Planetary Cartography in Russia. Astrophysics and Space Science Library, Vol 425. Springer, Switzerland. ISBN 978-3-319-21038-4. doi:10.1007/978-3-319-21039-1

    Google Scholar 

  • Shingareva KB, Leonenko SM (2003) Specialized planetary cartography data base. ISPRS WG IV/9: extraterrestrial mapping workshop “Advances in Planetary Mapping 2003”. Lunar and Planetary Institute, Houston, pp 35–38

    Google Scholar 

  • Shingareva KB, Zimbelman J, Buchroithner MF, Hargitai HI (2005) The realization of ICA commission projects on planetary cartography. Cartographica 40(4):105–114

    Article  Google Scholar 

  • Slyuta EN, Abdrakhimov AM, Basilevsky AT, Lazarev EN, Dolgopolov VP, Sheikhet AI (2010) Landing sites for the Russian Luna-Resurs mission to the Moon. In: 41st Lunar and Planetary Conference, 2010

    Google Scholar 

  • van Gasselt S, Nass A (2011) Planetary mapping—the datamodel’s perspective and GIS framework. Planet Space Sci 59:1231–1242

    Article  Google Scholar 

  • Zharkova AY, Kreslavsky MA, Brusnikin ES, Zubarev AE, Karachevtseva IP, Head III JW (2015) Morphometry of small flat floored craters on Mercury: implications for regolith thickness. American Geophysical Union, San Francisco. (December 14–18, 2015)

    Google Scholar 

  • Zubarev A, Nadezhdina I, Oberst J, Hussmann H, Stark A (2015) New Ganymede point network and global shape model. Planet Space Sci 117:246–249. doi:10.1016/j.pss.2015.06.022

    Article  Google Scholar 

Web References

Download references

Acknowledgment

This work was carried out in MIIGAiK and supported by Russian Science Foundation, project “Study of fundamental geodetic parameters and relief of planets and satellites”, No. 14-22-00197. The authors would like to acknowledge M. Kreslavsky for the advice and careful reading. We thank anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Karachevtseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karachevtseva, I.P., Kokhanov, A.A., Zubarev, A.E., Rodionova, Z.F., Matveev, E.V., Garov, A.S. (2016). Modern Methodology and New Tools for Planetary Mapping. In: Gartner, G., Jobst, M., Huang, H. (eds) Progress in Cartography. Lecture Notes in Geoinformation and Cartography(). Springer, Cham. https://doi.org/10.1007/978-3-319-19602-2_13

Download citation

Publish with us

Policies and ethics