Partial Solutions for Patient Safety

  • Thomas Wetter
Part of the Health Informatics book series (HI)


The theme of Chap.  8 of how to identify and safeguard patient safety against client inherent risks is complemented here with selected concrete methods and resources. We walk through the four dimensions – medical, personality, cognition, identity/authentication – and analyze methods and resources in use or apparently appropriate for use. Some promising approaches in pulmology, genetics, mental conditions, weak personality, cognition-adapted information, etc. exist next to others where either assessment of risk level or management of an existent risk is not handled responsibly, e.g. follow-up upon spurious gene scans or limitations in probing for adverse attitudes. Finally data privacy and confidentiality principles and how the client is involved for their protection are briefly addressed.


Patient safety Medical history Genetic risk Health literacy Personality inventories Health attitudes 


  1. 1.
    Ashton MC, Lee K. The HEXACO-60: a short measure of the major dimensions of personality. J Pers Assess. 2009;91(4):340–5. doi:  10.1080/00223890902935878.PubMedCrossRefGoogle Scholar
  2. 2.
    Ashton MC, Lee K, de Vries RE, Hendrickse J, Born MP. The maladaptive personality traits of the personality inventory for DSM-5 (PID-5) in relation to the HEXACO personality factors and schizotypy/dissociation. J Pers Disord. 2012;26(5):641–59.PubMedCrossRefGoogle Scholar
  3. 3.
    Anhøj J, Nielsen L. Quantitative and qualitative usage data of an internet-based asthma monitoring tool. J Med Internet Res. 2004;6(3):e33. doi:  10.2196/jmir.6.3.e23.CrossRefGoogle Scholar
  4. 4.
    Ashton MC. On medical and psychiatric use of psychological tests. Personal communication Sept. 2013, 2013.Google Scholar
  5. 5.
    Cawthorpe D. An evaluation of a computer-based psychiatric assessment: evidence for expanded use. Cyberpsychol Behav. 2001;4(4):503–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Cohn WF, Jones SM, Miesfeldt S. Are you at risk for hereditary breast cancer? Development of a personal risk assessment tool for hereditary breast and ovarian cancer. J Genet Couns. 2008;17(1):64–78. doi:  10.1007/s10879-007-9125-0.PubMedCrossRefGoogle Scholar
  7. 7.
    Donker T, van Straten A, Marks I, Cuijpers P. Brief self-rated screening for depression on the internet. J Affect Disord. 2010;122:253–9. doi:  10.1016/j.jad.2009.07.013.PubMedCrossRefGoogle Scholar
  8. 8.
    JCCM in’t Veen, Smits HH, Ravensberg AJJ, Hiemstra PS, Sterk PJ, Bel EH. Impaired perception of dyspnea in patients with severe ashtma – relation to sputum eosinophils. Am J Respir Crit Care Med. 1999;158:1134–41.Google Scholar
  9. 9.
    Kreuter MW, Black WJ, Friend L, Booker AC, Klump P, Bobra S, Holt CL. Use of computer kiosks for breast cancer education in five community settings. Health Educ Behav. 2006;33:624–42. doi:  10.1177/1090198106290795.CrossRefGoogle Scholar
  10. 10.
    Lenny P, Dear GE. Faking good on the MCMI-III: implications for child custody evaluations. J Pers Assess. 2009;91(6). doi:  10.1080/00223890903228505.
  11. 11.
    Liu W-T, Huang C-D, Wang C-H, Lee K-Y, Lin S-M, Kuo H-P. A mobile telephone-based interactive selfcare system improves asthma control. Eur Respir J. 2011;37:310–7. doi:  10.1183/09031936.00000810.PubMedCrossRefGoogle Scholar
  12. 12.
    Lovett KM, Liang BA, Mackey TK. Risks of online direct-to-consumer tumor markers for cancer screening. J Clin Oncol. 2012;30(13):1411–4. doi:  10.1200/JCO.2011.37.8984.PubMedCrossRefGoogle Scholar
  13. 13.
    Murray E, McCambridge J, Khadjesari Z, White IR, Thompson SG, Godfrey C, Linke S, Wallace P. The DYD-RCT protocol: an on-line randomised controlled trial of an interactive computer-based intervention compared with a standard information website to reduce alcohol consumption among hazardous drinkers. BMC Public Health. 2007;7:306. doi:  10.1186/1471-2458-7-306.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Maguire PA, Reay RE, Looi JCL, Cubis J, Byrne GJ, Raphael B. Neither the internist nor the internet: use of and trust in health information sources by people with schizophrenia. Aust N Z J Psychiatry. 2011;45:489–97. doi:  10.3109/00048674.2011.570308.PubMedCrossRefGoogle Scholar
  15. 15.
    O’Neill SM, Rubinstein WS, Wang C, Yoon PW, Acheson LS, Rothrock N, Starzyk EJ, Beaumont JL, Galliher JM, Ruffin MT, for the Family HealthwareTM Impact Trial Group. Familial risk for common diseases in primary care The Family HealthwareTM impact trial. Am J Prev Med. 2009;36(6). doi:  10.1016/j.amepre.2009.03.002.
  16. 16.
    Peace J, Valdez RS, Lutz KF. Data-based considerations for electronic family health history applications. Comput Inform Nurs. 2012;30(1):37–45. doi:  10.1097/NCN.0b013e31822b865b.PubMedGoogle Scholar
  17. 17.
    Rosenthal R, Rosnow RL. The volunteer subject, chapter 3. In: Rosenthal R, Rosnow RL, editors. Artifact in behavioral research. New York: Academic; 1969. pp. 59–118.Google Scholar
  18. 18.
    van der Heijden M, Lucas PJF, Lijnse B, Heijdra YF, Schermer TRJ. An autonomous mobile system for the management of COPD. J Biomed Inform. 2013;46:458–69. doi:  10.1016/j.jbi.2013.03.003.PubMedCrossRefGoogle Scholar
  19. 19.
    Vargas PA, Robles E, Harris J, Radford P. Using information technology to reduce asthma disparities in underserved populations: a pilot study. J Asthma. 2010;47(8):889–94. doi:  10.3109/02770903.2010.497887.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wilson K, Fornasier S, White KM. Psychological predictors of young adults’ use of social networking sites. Cyberpsychol Behav Social Netw. 2010;13(2):173–7. doi:  10.1089/cyber.2009.0094.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Wetter
    • 1
    • 2
  1. 1.Institute for Medical Biometry and InformaticsUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of Biomedical Informatics and Medical EducationUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations