Skip to main content

Full-Reference Image Quality Assessment Measure Based on Color Distortion

  • Conference paper

Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT,volume 456)

Abstract

The purpose of this paper is to introduce a new method for image quality assessment (IQA). The method adopted here is assumed to be Full-reference measure. Color images that are corrupted with different kinds of distortions are assessed by applying a color distorted algorithm on each color component separately. This approach use especially YIQ color space in computation. Gradient operator was successfully introduced to compute gradient image from the luminance channel of images. In this paper, we propose an alternative technique to evaluate image quality. The main difference between the new proposed method and the gradient magnitude similarity deviation (GMSD) method is the usage of color component for the detection of distortion.

Experimental comparisons demonstrate the effectiveness of the proposed method.

Keywords

  • Gradient similarity
  • Quality assessment
  • Test image
  • Color distortion
  • Color space

References

  1. Yang, C., Kwok, S.H.: Efficient gamut clipping for color image processing using LHS and YIQ. Opt. Eng. 42(3), 701–711 (2003)

    CrossRef  Google Scholar 

  2. Wang, Z., Bovik, A.C., Sheikh, H.R., Simocelli, E.P.: Image quality assessment: From error measurement to structural similarity. IEEE Trans. Image Processing 13(4), 600–612 (2004)

    CrossRef  Google Scholar 

  3. Guan-Hao, C., Chun-Ling, Y., Sheng-Li, X.: Gradient-based structural similarity for image quality assessment. In: Proc. ICIP 2006, pp. 2929–2932 (2006)

    Google Scholar 

  4. Ahmed Seghir, Z., Hachouf, F.: Edge-region information measure based on deformed and displaced pixel for Image Quality Assessment. Signal Processing: Image Communication 26(8-9), 534–549 (2011)

    Google Scholar 

  5. Final VQEG report on the validation of objective quality metrics for video quality assessment: http://www.its.bldrdoc.gov/vqeg/projects/frtv_phaseI/

  6. Zhang, F., Ma, L., Li, S.: Practical image quality metric applied to image coding. IEEE Trans. Multimedia 13, 615–624 (2011)

    CrossRef  Google Scholar 

  7. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, NewYork (1995)

    Google Scholar 

  8. Jähne, B., Haubecker, H., Geibler, P.: Handbook of Computer Vision and Applications. Academic, New York (1999)

    MATH  Google Scholar 

  9. Ponomarenko, N., Egiazarian, K.: Tampere Image Database, TID 2008, http://www.ponomarenko.info/tid2008.htm

  10. Larson, C., Chandler, D.M.: Categorical Image Quality (CSIQ) Database 2009, http://vision.okstate.edu/csiq

  11. Sheikh, H.R., Seshadrinathan, K., Moorthy, A.K., Wang, Z., Bovik, A.C., Cormack, L.K.: Image and Video Quality Assessment Research at LIVE 2004 (2004), http://live.ece.utexas.edu/research/quality

  12. Ponomarenko, N., et al.: Color image database TID2013: Peculiarities and preliminary results. In: Proc. 4th Eur. Workshop Vis. Inf. Process., pp. 106–111 (June 2013)

    Google Scholar 

  13. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing 20(8), 1–26 (2011)

    CrossRef  MathSciNet  Google Scholar 

  14. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index. Presented at IEEE Transactions on Image Processing, 684–695 (2014)

    Google Scholar 

  15. Kovesi, P.: Image features from phase congruency. Videre: Journal of Computer Vision Research 1(3), 1–26 (1999)

    Google Scholar 

  16. Gaubatz, M.: Metrix MUX Visual Quality Assessment Package: MSE, PSNR, SSIM, MSSIM, VSNR, VIF, VIFP, UQI, IFC, NQM, WSNR, SNR

    Google Scholar 

  17. foulard.ece.cornell.edu/gaubatz/metrix_mux/

  18. Liu, A., Lin, W., Narwaria, M.: Image quality assessment based on gradient similarity. IEEE Transactions on Image Processing 21(4), 1500–1512 (2012)

    CrossRef  MathSciNet  Google Scholar 

  19. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proc. IEEE Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, pp. 1398–1402 (November 2003)

    Google Scholar 

  20. Chandler, D.M., Hemami, S.S.: VSNR: A wavelet-based visual signal-to-noise-ratio for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007)

    CrossRef  MathSciNet  Google Scholar 

  21. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    CrossRef  Google Scholar 

  22. Sheikh, H.R., Bovik, A.C., de Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. on Image Processing 14(12), 2117–2128 (2005)

    CrossRef  Google Scholar 

  23. Damera-Venkata, N., Kite, T.D., Geisler, W.S., Evans, B.L., Bovik, A.C.: Image quality assessment based on degradation model. IEEE Trans. on Image Processing 9(4), 636–650 (2000)

    CrossRef  Google Scholar 

  24. Larson, E.C., Chandler, D.M.: Most apparent distortion: Full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006:1–011006:21 (2010)

    Google Scholar 

  25. Larson, E., Chandler, D.: Full-Reference Image Quality Assessment and the Role of Strategy: The Most Apparent Distortion, http://vision.okstate.edu/mad/

  26. Chok, N.S.: Pearson’s Versus Spearman’s and Kendall’s Correlation Coefficients for Continuous Data. Master’s Thesis, University of Pittsburgh (2010)

    Google Scholar 

  27. Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process. 20(5), 1185–1198 (2011)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zianou Ahmed Seghir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 IFIP International Federation for Information Processing

About this paper

Cite this paper

Seghir, Z.A., Hachouf, F. (2015). Full-Reference Image Quality Assessment Measure Based on Color Distortion. In: Amine, A., Bellatreche, L., Elberrichi, Z., Neuhold, E., Wrembel, R. (eds) Computer Science and Its Applications. CIIA 2015. IFIP Advances in Information and Communication Technology, vol 456. Springer, Cham. https://doi.org/10.1007/978-3-319-19578-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19578-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19577-3

  • Online ISBN: 978-3-319-19578-0

  • eBook Packages: Computer ScienceComputer Science (R0)