Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874. Springer, Heidelberg (2009)
CrossRef
Google Scholar
Bouguet, J.Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker, Description of the algorithm. Intel Corporation Microprocessor Research Labs, 851–862 (2000)
Google Scholar
Deriche, R., Blaszka, T.: Recovering and characterizing im-age features using an efficient model based approach. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, New York, USA, pp. 530–535 (1993)
Google Scholar
Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd edn. Pearson Education Limited (2003)
Google Scholar
Harris, C.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–152 (1988)
Google Scholar
Horn, B.K.P., Schunk, B.G.: Determining Optical Flow. Artificial Intelligence 2, 185–203 (1981)
CrossRef
Google Scholar
Larhmam, M.A., et al.: A portable multi-cpu/multi-gpu based vertebra localization in sagittal mr images. In: International Conference on Image Analysis and Recognition, ICIAR 2014, pp. 209–218 (2014)
Google Scholar
Lecron, F., et al.: Heterogeneous computing for vertebra detection and segmentation in x-ray images. International Journal of Biomedical Imaging: Parallel Computation in Medical Imaging Applications 2011, 1–12 (2011)
CrossRef
Google Scholar
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV) 60(2), 91–110 (2004)
CrossRef
Google Scholar
Mahmoudi, S.A., et al.: Multi-gpu based event detection and localization using high definition videos. In: International Conference on Multimedia Computing and Systems (ICMCS), pp. 81–86 (2014)
Google Scholar
Mahmoudi, S.A., Kierzynka, M., Manneback, P., Kurowski, K.: Real-time motion tracking using optical flow on multiple gpus. Bulletin of the Polish Academy of Sciences: Technical Sciences 62, 139–150 (2014)
CrossRef
Google Scholar
Mahmoudi, S.A., Lecron, F., Manneback, P., Benjelloun, M., Mahmoudi, S.: GPU-Based Segmentation of Cervical Vertebra in X-Ray Images. In: IEEE International Conference on Cluster Computing HPCCE Workshop, pp. 1–8 (2010)
Google Scholar
Mahmoudi, S.A., Manneback, P.: Efficient exploitation of heterogeneous platforms for images features extraction. In: 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 91–96 (2012)
Google Scholar
Marzat, J., Dumortier, Y., Ducrot, A.: Real-time dense and accurate parallel optical flow using CUDA. In: Proceedings of WSCG, pp. 105–111 (2009)
Google Scholar
Park, K., Nitin, S., Man, H.L.: Design and Performance Evaluation of Image Processing Algorithms on GPUs. IEEE Transactions on Parallel and Distributed Systems 28, 1–14 (2011)
Google Scholar
Ricardo Possa, P., Mahmoudi, S.A., Harb, N., Valderrama, C., Manneback, P.: A multi-resolution fpga-based architecture for real-time edge and corner detection. IEEE Transactions on Computers 63, 2376–2388 (2014)
CrossRef
Google Scholar
Sinha, S.N., Fram, J.-M., Pollefeys, M., Genc, Y.: Gpu-based video feature tracking and matching. In: EDGE, Workshop on Edge Computing Using New Commodity Architectures (2006)
Google Scholar
Tardieu, D., al.: Video navigation tool: Application to browsing a database of dancers’ performances. In: QPSR of the numediart research program, vol. 2(3), pp. 85–90 (2009)
Google Scholar
Yang, Z., Zhu, Y., Pu, Y.: Parallel Image Processing Based on CUDA. In: International Conference on Computer Science and Software Engineering China, pp. 198–201 (2008)
Google Scholar
Zhu, S., Ma, K.-K.: A new diamond search algorithm for fast block-matching motion estimation. IEEE Transactions on Image Processing 9(2), 287–290 (2000)
CrossRef
MathSciNet
Google Scholar