Skip to main content

Multi-method Approaches for Uncertainty Analysis

  • Chapter
  • First Online:
Three Domain Modelling and Uncertainty Analysis

Part of the book series: Energy Systems ((ENERGY))

  • 609 Accesses

Abstract

The objectives of this chapter are: (1) Demonstrating the principles of design of uncertainty analysis methodologies. (2) Identifying and formulating analytical sophistication degrees for uncertainty analysis in the context of IEPCT. (3) Suggesting and implementing quality factors for evaluation of uncertainty analysis methods and methodologies, thus creating an extensive review of different methods. (4) Presenting two different multi-method approaches for uncertainty analysis based on probabilistic and fuzzy set theory. (5) Providing a review of the methods and methodologies for uncertainty analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Experts in this context are persons having specific knowledge about certain domain e.g. in demography or energy technology.

References

  1. Mirakyan A (2014) PhD thesis: Cadre méthodologique pour la gestion de l’incertain en planification énergétique long terme des villes et territoires. UNI Strabourg, Strasbourg

    Google Scholar 

  2. Paté-Cornell ME (1996) Uncertainties in risk analysis: six levels of treatment. Reliab Eng Syst Saf 54(2–3):95–111. doi:10.1016/S0951-8320(96)00067-1

    Article  Google Scholar 

  3. Mirakyan A, De Guio R (2013) Integrated energy planning in cities and territories: a review of methods and tools. Renew Sustain Energy Rev 22:289–297. doi:10.1016/j.rser.2013.01.033

    Article  Google Scholar 

  4. Mirakyan A, De Guio R (2015) Modelling and uncertainties in integrated energy planning. Renew Sustain Energy Rev 46:62–69. doi:10.1016/j.rser.2015.02.028

    Article  Google Scholar 

  5. Merz B, Thieken AH (2005) Separating natural and epistemic uncertainty in flood frequency analysis. J Hydrol 309(1–4):114–132. doi:10.1016/j.jhydrol.2004.11.015

    Article  Google Scholar 

  6. Hoffman FO, Hammonds JS (1994) Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal 14(5):707–712. doi:10.1111/j.1539-6924.1994.tb00281.x

    Article  Google Scholar 

  7. Hofer E (1996) When to separate uncertainties and when not to separate. Reliab Eng Syst Saf 54(2–3):113–118. doi:10.1016/S0951-8320(96)00068-3

    Article  Google Scholar 

  8. Wardekker JA, van der Sluijs JP, Janssen PHM, Kloprogge P, Petersen AC (2008) Uncertainty communication in environmental assessments: views from the Dutch science-policy interface. Environ Sci Policy 11(7):627–641. doi:10.1016/j.envsci.2008.05.005

    Article  Google Scholar 

  9. Kloprogge P, Sluijs Jvd, Wardekker A (2007) Uncertainty communication, issues and good practice

    Google Scholar 

  10. Refsgaard JC, van der Sluijs JP, Højberg AL, Vanrolleghem PA (2007) Uncertainty in the environmental modelling process—a framework and guidance. Environ Model Softw 22(11):1543–1556. doi:10.1016/j.envsoft.2007.02.004

    Article  Google Scholar 

  11. Van der Sluijs JP, Janssen PHM, Petersen AC, Kloprogge P, Risbey JS, Tuinstra W, Ravetz JR (2004) RIVM/MNP guidance for uncertainty assessment and communication: tool catalogue for uncertainty assessment (trans: Innovation CIfSDa). BA Bilthoven

    Google Scholar 

  12. Ross TJ, Booker JM, Parkinson WJ (2002) Fuzzy logic and probability applications: bridging the gap. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)

    Google Scholar 

  13. Mirakyan A, De Guio R (2014) A methodology in innovative support of the integrated energy planning preparation and orientation phase. Energy 78:916–927. doi:10.1016/j.energy.2014.10.089

    Article  Google Scholar 

  14. Lawrence M, Goodwin P, O’Connor M, Önkal D (2006) Judgmental forecasting: a review of progress over the last 25 years. Int J Forecast 22(3):493–518. doi:10.1016/j.ijforecast.2006.03.007

    Article  Google Scholar 

  15. Sterman J (2000) Business dynamics: systems thinking and modeling for a complex world. Irwin/McGraw-Hill c2000

    Google Scholar 

  16. Bukowski J, Korn L, Wartenberg D (1995) Correlated inputs in quantitative risk assessment: the effects of distributional shape. Risk Anal 15(2):215–219. doi:10.1111/j.1539-6924.1995.tb00315.x

    Article  Google Scholar 

  17. Jaworski P, Durante F, Härdle WK, Rychlik T (2010) Copula theory and its applications. In: Proceedings of the workshop held in Warsaw, 25–26 Sept 2009. Springer, Berlin

    Google Scholar 

  18. Buckley JJ (1985) Entropy principles in decision making under risk. Risk Anal 5(4):303–313. doi:10.1111/j.1539-6924.1985.tb00186.x

    Article  Google Scholar 

  19. Clemen RT, Reilly T (1999) Correlations and copulas for decision and risk analysis. Manage Sci 45(2):208–224. doi:10.1287/mnsc.45.2.208

    Article  Google Scholar 

  20. Abbas AE (2006) Entropy Methods for Joint Distributions in Decision Analysis. IEEE Transactions on engineering managment 53 (1)

    Google Scholar 

  21. Nelsen RB (2006) An introduction to copulas. Springer Science & Business Media

    Google Scholar 

  22. Knol A, Slottje P, van der Sluijs J, Lebret E (2010) The use of expert elicitation in environmental health impact assessment: a seven step procedure. Environ Health 9(1):19

    Article  Google Scholar 

  23. Spetzler CS, Carl-Axel SSVH (1975) Probability encoding in decision analysis. Manage Sci 22(3):340–358. doi:10.2307/2629647

    Article  Google Scholar 

  24. O’Hagan A (2012) Probabilistic uncertainty specification: overview, elaboration techniques and their application to a mechanistic model of carbon flux. Environ Model Softw 36:35–48. doi:10.1016/j.envsoft.2011.03.003

    Article  Google Scholar 

  25. Booker JM, Anderson MC, Meyer MA (2001) The role of expert knowledge in uncertainty quantification (Are we adding more uncertainty or more understanding?), pp 155–161. doi:citeulike-article-id:8495306

  26. Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. Science 185(4157):1124–1131. doi:10.2307/1738360

    Article  Google Scholar 

  27. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13. doi:10.1016/S0020-7373(75)80002-2

    Article  Google Scholar 

  28. Chen G, Pham TT (2000) Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems. Taylor & Francis

    Google Scholar 

  29. Siler W, Buckley JJ (2005) Fuzzy expert systems and fuzzy reasoning. Wiley-Interscience

    Google Scholar 

  30. Celikyilmaz A, Türksen IB (2009) Modeling uncertainty with fuzzy logic: with recent theory and applications. Springer, Heidelberg

    Book  Google Scholar 

  31. Zimmermann HJ (2001) Fuzzy set theory-and its applications. Kluwer Academic Publishers

    Google Scholar 

  32. Lawry J, Miranda E, Bugarin A, Li S, Gil MA, Grzegorzewski P, Hryniewicz O (2007) Soft methods for integrated uncertainty modelling

    Google Scholar 

  33. Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. J Stat Softw 27(3):1–22

    Google Scholar 

  34. Chatfield C (1993) Calculating interval forecasts. J Bus Econ Stat 11(2):121–135. doi:10.2307/1391361

    Google Scholar 

  35. Chatfield C (2002) Time-series forecasting. Taylor & Francis

    Google Scholar 

  36. Williams WH, Goodman ML (1971) A simple method for the construction of empirical confidence limits for economic forecasts. J Am Stat Assoc 66(336):752–754. doi:10.2307/2284223

    Article  Google Scholar 

  37. Wright G, Lawrence MJ, Collopy F (1996) The role and validity of judgment in forecasting. Int J Forecast 12(1):1–8. doi:10.1016/0169-2070(96)00674-7

    Article  Google Scholar 

  38. Everette S, Gardner J (1988) A simple method of computing prediction intervals for time series forecasts. Manage Sci 34(4):541–546. doi:10.1287/mnsc.34.4.541

    Article  Google Scholar 

  39. Hyndman RJ, Koehler AB, Ord JK, Snyder RD (2005) Prediction intervals for exponential smoothing using two new classes of state space models. J Forecast 24(1):17–37. doi:10.1002/for.938

    Article  Google Scholar 

  40. Snyder RD, Ord JK, Koehler AB (2001) Prediction intervals for ARIMA models. J Bus Econ Stat 19(2):217–225. doi:10.2307/1392165

    Article  Google Scholar 

  41. Fishman GS (2006) A first course in Monte Carlo. Thomson Brooks/Cole, Duxbury

    Google Scholar 

  42. Refsgaard JC, van der Sluijs JP, Brown J, van der Keur P (2006) A framework for dealing with uncertainty due to model structure error. Adv Water Resour 29(11):1586–1597. doi:10.1016/j.advwatres.2005.11.013

    Article  Google Scholar 

  43. Visser H, Folkert RJM, Hoekstra J, de Wolff JJ (2000) Identifying key sources of uncertainty in climate change projections. Clim Change 45(3–4):421–457. doi:10.1023/a:1005516020996

    Article  Google Scholar 

  44. Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688. doi:10.1016/j.ijforecast.2006.03.001

    Article  Google Scholar 

  45. Armstrong JS, Collopy F (1993) Error measures for generalizing about forecasting methods: empirical comparisons. Int J Forecast 8(1) 69–80. doi:http://dx.doi.org/10.1016/0024-6301(93)90280-S (June 1992. Long Range Planning 26(1):150 )

  46. Carbone R, Armstrong JS (1982) Evaluation of extrapolative forecasting methods: results of a survey of academicians and practitioners. J Forecast 1(2):215–217. doi:10.1002/for.3980010207

    Article  Google Scholar 

  47. Zürni SU (2003) Möglichkeiten und Grenzen der Methode der Szenarioanalyse in der Öffentlichen Planung: eine Analyse am Beispiel der Schweizer Energieplanung wiku-verlag

    Google Scholar 

  48. Mißler-Behr M (1993) Methoden der Szenarioanalyse. Deutscher Universitäts-Verlag, Univ, Augsburg

    Book  Google Scholar 

  49. Götze U (1991) Szenario-Technik in der strategischen Unternehmungsplanung. DUV: Wirtschaftswissenschaft edn. Deutscher Universitäts-Verlag

    Google Scholar 

  50. Mißler-Behr M (2001) Fuzzybasierte Controllinginstrumente. Entwicklung von unscharfen Ansätzen. vol 1. Deutscher Universitäts-Verlag

    Google Scholar 

  51. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers

    Google Scholar 

  52. Schwartz P (1996) The art of the long view: paths to strategic insight for yourself and your company. Currency Doubleday

    Google Scholar 

  53. van der Heijden K (2011) Scenarios: the art of strategic conversation. Wiley

    Google Scholar 

  54. Sumerling T (2001) Scenario development methods and practice: an evaluation based on the NEA workshop on scenario development, Madrid, May 1999. OECD

    Google Scholar 

  55. Schnaars SP (1987) How to develop and use scenarios. Long Range Plan 20(1):105–114. doi:10.1016/0024-6301(87)90038-0

    Article  Google Scholar 

  56. Swart RJ, Raskin P, Robinson J (2004) The problem of the future: sustainability science and scenario analysis. Glob Environ Change 14(2):137–146. doi:10.1016/j.gloenvcha.2003.10.002

    Article  Google Scholar 

  57. Börjeson L, Höjer M, Dreborg K-H, Ekvall T, Finnveden G (2006) Scenario types and techniques: towards a user’s guide. Futures 38(7):723–739. doi:10.1016/j.futures.2005.12.002

    Article  Google Scholar 

  58. European Environment Agency (EEA) (2009) Looking back on looking forward: a review of evaluative scenario literature, vol No 3/2009. Technical report. Copenhagen

    Google Scholar 

  59. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley

    Google Scholar 

  60. Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174. doi:10.2307/1269043

    Article  Google Scholar 

  61. Morgan MG, Henrion M, Small M (1992) Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, Cambridge

    Google Scholar 

  62. Clemen RT (1996) Making hard decisions: an introduction to decision analysis. Duxbury Press

    Google Scholar 

  63. Confalonieri R, Bellocchi G, Bregaglio S, Donatelli M, Acutis M (2010) Comparison of sensitivity analysis techniques: a case study with the rice model WARM. Ecol Model 221(16):1897–1906. doi:10.1016/j.ecolmodel.2010.04.021

    Article  Google Scholar 

  64. Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32(2):135–154. doi:10.1007/bf00547132

    Article  Google Scholar 

  65. Forrester JW, Senge PM (1978) Tests for building confidence in system dynamics models. System Dynamics Group, Sloan School of Management, Massachusetts Institute of Technology

    Google Scholar 

  66. Barlas Y (1994) Model validation in system dynamics. Paper presented at the proceedings of the 1994 international system dynamics conference, Scotland

    Google Scholar 

  67. Barlas Y, Carpenter S (1990) Philosophical roots of model validation: two paradigms. Syst Dyn Rev 6(2):148–166. doi:10.1002/sdr.4260060203

    Article  Google Scholar 

  68. Qudrat-Ullah H, Seong BS (2010) How to do structural validity of a system dynamics type simulation model: the case of an energy policy model. Energy Policy 38(5):2216–2224. doi:10.1016/j.enpol.2009.12.009

    Article  Google Scholar 

  69. Barlas Y (1989) Multiple tests for validation of system dynamics type of simulation models. Eur J Oper Res 42(1):59–87. doi:10.1016/0377-2217(89)90059-3

    Article  Google Scholar 

  70. Funtowicz SO, Ravetz JR (1990) Uncertainty and quality in science for policy. Springer, Berlin

    Google Scholar 

  71. Van Asselt BA (2000) Perspectives on uncertainty and risk: the PRIMA approach to decision support. Springer, Berlin

    Google Scholar 

  72. Trisoglio A (1995) Plurality and political culture, a response to thompson and drake. In: Risk, policy and complexity, Laxenburg, IIASA, p 18

    Google Scholar 

  73. Van Der Sluijs JP, Craye M, Funtowicz S, Kloprogge P, Ravetz J, Risbey J (2005) Combining quantitative and qualitative measures of uncertainty in model-based environmental assessment: the NUSAP system. Risk Anal 25(2):481–492. doi:10.1111/j.1539-6924.2005.00604.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atom Mirakyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mirakyan, A., De Guio, R. (2015). Multi-method Approaches for Uncertainty Analysis. In: Three Domain Modelling and Uncertainty Analysis. Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-19572-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19572-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19571-1

  • Online ISBN: 978-3-319-19572-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics